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a b s t r a c t

This paper evaluates the common practice of estimating dynamic stochastic general equilibrium (DSGE)
models using seasonally adjusted data. The simulation experiment shows that the practice leads to sizable
distortions in estimated parameters. This is because the effects of seasonality, which are magnified by
the model’s capital accumulation and labor market frictions, are not restricted to the so-called seasonal
frequencies but instead are propagated across the entire frequency domain.
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1. Introduction

Most aggregate time series display large seasonal fluctuations.
As Barsky and Miron (1989) show, seasonal fluctuations account
for a substantial fraction of total variations in quantity variables,
such as GDP, investment, and hours worked. Nevertheless, the
common practice among economists when estimating dynamic
stochastic general equilibrium (DSGE) models is to simply
ignore seasonality and use seasonally adjusted data. The practice
implicitly assumes that seasonal adjustments can decompose
data into seasonal and nonseasonal components, and values
of interesting parameters can be recovered correctly. However,
modern dynamic economic theory dictates that seasonality
interacts with other endogenous variables in a complex and
possibly nonlinear manner.1 Hence seasonal adjustments based
on arbitrary identifying restrictions would necessarily lead to
distorted inference. An important question for macroeconomists
is whether those distortions are quantitatively relevant.

In this paper, I develop a general equilibrium business cycle
model that can account for broad features of U.S. seasonal
and nonseasonal fluctuations. Building on recent contributions
(e.g., Christiano et al., 2005; Smets and Wouters, 2007; Justiniano
et al., 2010), the model incorporates a host of real and nominal
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1 For an elegant exposition of this issue, see Ghysels (1988).
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frictions and various types of shocks. The model is also subject
to seasonal variations in technology and preference. Endogenous
responses by agents to those seasonal variations allow the model
to reproduce the seasonality observed in the U.S. aggregate data. I
then simulate artificial data from the parameterizedmodel in order
to analyze the effects of estimating DSGE models using seasonally
adjusted data.

A hypothetical econometrician uses the seasonally adjusted
data to estimate an aseasonal counterpart of the baseline model
using Bayesian methods. I find that the estimated parameters
differ substantially from their true values. In contrast, when
estimated with seasonally unadjusted data, most parameters are
very precisely estimated. The result is crucial, because it suggests
that the conventional practice of estimatingDSGEmodelsmay lead
to severely biased inference and that policy experiments based on
the estimated parameters could be misleading.

Given the significance of the finding, I devote considerable
effort to studying the reasons for this distortion. Importantly,
the distortions cannot be mitigated by constructing alternative
seasonal adjustment filters, as they still arise in large sample
environments with ‘‘ideal’’ filters. Using frequency domain tools,
I show that the effects of seasonality are not confined to the so-
called seasonal frequencies but instead are propagated across other
nonseasonal frequencies. In particular, the effects are noticeable
at higher frequencies and act in ways that raise spectral power
in those regions. The intuition is relatively straightforward: Since
seasonality induces agents to reallocate their resources across
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seasons within a year, the effects of seasonality are noticeable
at higher frequencies. Moreover, because of seasonality, agents
have different responses across seasons to the same shocks, and
this additional source of volatility raises spectral power. I show
that two key frictions in the model — the investment adjustment
cost and the nominal wage rigidity — magnify the nonlinear
interactions of seasonality and endogenous variables andmake the
propagation of the seasonal components quantitatively relevant.
As a result, standard seasonal adjustment procedures that try to
dampen spectral power only near seasonal frequencies are not
effective, and the estimated parameters have to adjust in order
to compensate for the discrepancy of spectra between seasonal
and aseasonal versions of the model. I also provide some evidence
suggesting that frictions that generate large distortions are not
limited to those I assumed in the baseline model but include other
general classes of capital accumulation and labor market frictions
as well.

The present paper builds on several important contributions
from the previous literature. Sims (1993) and Hansen and Sargent
(1993) forcefully defend the common practice of estimating DSGE
models using seasonally adjusted data. Their argument is based
on two observations. First, directly modeling seasonality may
lead to large distortions if the mechanism generating seasonality
is misspecified. Second, in most examples they consider, using
seasonally adjusted data leads to fairly accurate estimates. My
contribution with respect to their papers is to show that, in
a state-of-the-art DSGE model that is parameterized to match
certain features of U.S. business cycle fluctuations, the second
observation does not hold. I also deal with concerns about model
misspecifications in more detail later in the paper. This paper is
also related to Christiano and Todd (2002). There are two main
departures from their study. First, they focus on the effects of
seasonal adjustment on business cycle statistics. I consider the
effects on a likelihood-based inference. Since a likelihood function
contains all information from cross-equation restrictions imposed
by dynamic economic theory, implications of seasonality may be
quite different from those based on arbitrary sets of moments.
Moreover, since it has now become a widely accepted approach
to estimate DSGE model parameters using formal econometric
methods, I believe this is a relevant application for many
researchers. Second, they use a standard real business cycle model
to answer their question at hand. My model introduces additional
frictions and propagation structures (e.g., habit persistence, capital
utilization, nominal rigidities, etc.) into their model. As I will show,
some of the new added features in my model are the key driving
force of my results.

The rest of the paper is organized as follows. Section 2
constructs a DSGE model with seasonality. Section 3 sets up the
main experiment. Section 4 reports the results and shows that
seasonal adjustments lead to sizable distortions in parameter
estimates. Section 5 identifies reasons for the distortions. Section 6
proposes a practical procedure that helps researchers decide
whether or not to include seasonality in their models when
potential model misspecifications are of concern. Finally, Section 7
concludes.

2. The seasonal DSGE model

The baseline seasonal model builds on a medium-scale DSGE
model with a number of real and nominal frictions, along the
lines of Christiano et al. (2005), Smets and Wouters (2007),
and Justiniano et al. (2010). Following the previous literature
on the subject (e.g., Chatterjee and Ravikumar, 1992; Braun and
Evans, 1995; Liu, 2000), seasonality originates from deterministic
shifts in technology and preference. Variations in technology
could represent, for example, seasonal fluctuations in weather.
Variations in preferences could represent expenditures due to
several kinds of social events, such as Christmas. Presumably
modeling seasonality in such a way that it originates from deeper
structures of the economy would strengthen the case for using
seasonally unadjusted data. However, the question I would like
to ask in this paper is whether even a seemingly innocuous,
simplemechanism for seasonalitywould generate large distortions
through the endogenous responses to seasonality by optimizing
agents.

The economy is composed of the final-goods sector, inter-
mediate-goods sector, household sector, employment sector, and
a government. I will begin by describing the production side of the
economy.

2.1. The final-goods sector

In each period t , the final goods, Yt , are produced by a perfectly
competitive representative firm that combines a continuum of
intermediate goods, indexed by j ∈ [0, 1], with technology

Yt =

 1

0
Y

θp−1
θp

j,t dj

 θp
θp−1

.

Here, Yj,t denotes the time t input of intermediate good j and θp
controls the price elasticity of demand for each intermediate good.
The demand function for good j is

Yj,t =


Pj,t
Pt

−θp

Yt ,

where Pt and Pj,t denote the price of the final good and
intermediate good j, respectively. Finally, Pt is related to Pj,t via the
relationship

Pt =

 1

0
P1−θp
j,t dj

 1
1−θp

.

2.2. The intermediate-goods sector

The intermediate-goods sector is monopolistically competitive.
In period t , each firm j buys Kj,t units of capital service from
the household sector and Hj,t units of aggregate labor input from
the employment sector to produce intermediate good j using
technology

Yj,t = ztKα
j,t(XtHj,t)

1−α,

where zt is the neutral technology shock at time t . zt follows the
law of motion

ln

zt
zq


= ρz ln


zt−1

zq−1


+ ϵz,t , ϵz,t ∼ N(0, σ 2

z ),

where zq is the steady-state level of zt in season q. α is the
capital share in the production function and Xt is a deterministic
technological process that grows at rate γ .

In period t , the firm can reoptimize its intermediate-goods price
with probability (1− ξp). Firms that cannot reoptimize index their
price according to the following: Pj,t = π

χp
t−1π

1−χpPj,t−1, where
πt−1 is the inflation rate in period t − 1, π is the steady-state
inflation rate (which is different from the steady-state level of the
inflation rate in season q, πq), and χp ∈ [0, 1] is a parameter that
controls the degree of indexation to past inflation.

2.3. The household sector

There is a continuum of households, indexed by i ∈ [0, 1].
In each period, household i chooses consumption Ct , investment
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It , bond purchases Bt , and nominal wage Wi,t to maximize utility
given by the following:

Et

∞
s=0

βs


τt+s ln(Ct+s − bCt+s−1) − ϕ

H1+η

i,t+s

1 + η


,

where β is a discount factor, b represents consumption habit, η
controls (the inverse of) the Frisch labor supply elasticity, andHi,t is
the number of hoursworked by i.ϕ is a scale factor that determines
hours worked in the steady state. I normalize ϕ = 1. τt is the
preference shock that follows the process:

ln


τt

τq


= ρτ ln


τt−1

τq−1


+ ϵτ ,t , ϵτ ,t ∼ N(0, σ 2

τ ),

where τq is the steady-state level of τt in season q.
The household’s budget constraint is

PtCt + Pt It + Bt ≤ Wi,tHi,t + Rk
t utK

p
t−1

+ Rt−1Bt−1 + Dt + Ai,t + Tt

where Rk
t is the rental rate of capital, ut is the utilization rate

of capital, K p
t−1 is the stock of physical capital, Rt−1 is the

gross nominal interest rate from period t − 1 to t , Dt is the
combined profit of all the intermediate-goods firms distributed
equally to each household, and Tt are lump-sum transfers from
the government. I assume that households buy securities, whose
payoffs are contingent on whether it can reoptimize its wage.2 Ai,t
denotes the net cash inflow from participating in state-contingent
security markets at time t .

Capital utilization transforms physical capital into capital
services according to

Kt = utK
p
t−1.

The physical capital stock evolves according to the following law
of motion:

K p
t = (1 − δ(ut))K

p
t−1 + µt


1 − S


It

It−1


It .

Following Greenwood et al. (1988), I assume that increasing the
intensity of capital utilization speeds up the rate of depreciation
δ(ut). As in Schmitt-Grohe and Uribe (2008), I adopt a quadratic
formulation for the function δ:

δ(ut) = δ0 + δ1(ut − 1) +
δ2

2
(ut − 1)2,

with δ0, δ1, δ2 > 0. The function S captures the notion of
adjustment costs in investment, as proposed in Christiano et al.
(2005). I adopt the following specification for S:

S


It
It−1


=

κ

2


It

It−1
− γ

2

,

with κ > 0. Finally, µt is the investment technology shock that
follows the process:

ln


µt

µq


= ρµ ln


µt−1

µq−1


+ ϵµ,t , ϵµ,t ∼ N(0, σ 2

µ),

where µq is the steady-state level of µt in season q.

2 The existence of state-contingent securities ensures that households are
homogeneous with respect to consumption and asset holdings, even though
they are heterogeneous with respect to the wage rate and hours because of the
idiosyncratic nature of the timing of wage reoptimization. See Christiano et al.
(2005).
2.4. The employment sector and wage setting

In each period t , a perfectly competitive representative
employment agency hires labor from a continuum of households,
indexed by i ∈ [0, 1], to produce an aggregate labor service, Ht ,
using technology

Ht =

 1

0
H

θw−1
θw

i,t di
 θw

θw−1

,

where Hi,t denotes the time t input of labor service from
household i and θw controls the price elasticity of demand for each
household’s labor service. The agency sells the aggregated labor
input to the intermediate firms for a nominal price of Wt per unit.
The demand function for the labor service of household i is

Hi,t =


Wi,t

Wt

−θw

Ht ,

where Wi,t denotes the nominal wage rate of the labor service of
household i.Wt is related to Wi,t via the relationship

Wt =

 1

0
W 1−θw

i,t di
 1

1−θw

.

In each period t , a household faces a probability (1 − ξw) of
being able to reoptimize its nominal wage. Households that cannot
reoptimize index their wage according to the following: Wi,t =

γπ
χw

t−1π
1−χwWi,t−1, where χw ∈ [0, 1] is a parameter that controls

the degree of indexation to past inflation.

2.5. The government and resource constraint

The central bank follows a Taylor-type reaction function:

Rt

R
=


Rt−1

R

ρR


πt

π ⋆
t

φπ

Yt/Yt−1

Yq/Yq−1

φY
1−ρR

eϵR,t ,

ϵR,t ∼ N(0, σ 2
R )

where R is the steady-state level of the nominal interest rate, ρR is
the persistence of the rule, and φπ and φY are the size of the policy
response to the deviation of inflation and output growth from their
targets, respectively. Yt/Yt−1 is the growth rate of output in period
t and Yq/Yq−1 is the steady-state growth rate of output in season q.
ϵR,t is an exogenous shock to the interest rate rule.π ⋆

t is the central
bank’s inflation target, which evolves according to

ln


π ⋆
t

πq


= ρπ ln


π ⋆
t−1

πq−1


+ ϵπ,t , ϵπ,t ∼ N(0, σ 2

π ),

where πq is the steady-state inflation rate in season q.
The aggregate resource constraint is Ct + It + Gt = Yt . Gt is the

amount of government spending, which is determined as a time-
varying fraction of output

Gt = gtYt ,

and gt follows the process

ln

gt
g


= ρg ln


gt−1

g


+ ϵg,t , ϵg,t ∼ N(0, σ 2

g ),

where g is the steady-state ratio of government spending to
output. Finally, the government balances the budget constraint
every period given by

Gt = −Tt .
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2.6. Solution method

The choice of the solution method is very important. There
are currently two major methods for solving DSGE models with
seasonality. The first method is the one used in Chatterjee and
Ravikumar (1992). We log-linearize the seasonal steady state
around the balanced growth path and log-linearize the equilibrium
conditions around the log-linearized seasonal steady state (CR
method). The seasonal steady state is a periodic perfect foresight
path that satisfies equilibrium conditions without uncertainty for
each quarter. A more accurate alternative is the one used in
Braun and Evans (1995). We directly solve for the seasonal steady
state using a nonlinear solution method and log-linearize the
equilibrium conditions around the exact seasonal steady state (BE
method).

As is well known, a solution to a linear rational expectations
system can be cast in a state-space representation. The state-space
representation could form a basis of the Kalman filtering algorithm
in building a likelihood for the estimation. The transition equation
that characterizes the evolution of endogenous variables3 isst,q = Xq(θ)st−1,q−1 + Yq(θ)ϵt ,

where st,q is a vector that collects st,q = ln(st,q/sq), which is
the log-deviation of a variable st,q in time t at quarter q from
its seasonal steady state sq. Xq(θ) and Yq(θ) are the coefficient
matrices that depend on a vector of the structural parameters θ ,
and ϵt is a vector of exogenous shocks. The CR method delivers
a solution that restricts Xq(θ) = X(θ) and Yq(θ) = Y (θ) for all
quarters q = 1, . . . , 4. The BE method delivers a solution that
allows Xq(θ) and Yq(θ) to take different values across different
quarters.

Now consider a seasonal adjustment procedure that subtracts
the seasonal steady states from the data.4 In this case we havesSAt = st,q, wheresSAt is a vector that collects the log-deviations
of the seasonally adjusted variables from their steady states.
Suppose that an econometrician fits an aseasonal DSGE model
to the seasonally adjusted datasSAt . Observe that the CR method
delivers consistent estimates. The BE method, on the other hand,
may deliver important distortions, since the econometrician is
fitting a model with constant X(θ) and Y (θ) to a data generating
process where Xq(θ) and Yq(θ) are periodically varying. Since my
purpose is to quantify those distortions, I choose to work with the
BE method.

3. The experiment

I ask whether using seasonally adjusted data leads to large
distortions by estimating model parameters with simulated data
from the seasonal DSGE model. First, I need to assign some values
to the structural parameters and establish that the model is
able to match certain features of U.S. seasonal and nonseasonal
fluctuations.

3.1. Parameterization

There are three sets of parameters. The first set of parameters
are those that characterize technology, preferences, and the central
bank policy in themodel and do not vary over quarters. The second
set of parameters are those that vary across quarters. The first

3 For simplicity, I assume that all endogenous variables are observable to an
econometrician (i.e., the coefficientmatrix of the observation equation is an identity
matrixwith nomeasurement error). All of the discussion below extends to themore
general case where some variables are latent.
4 Note that any reasonable seasonal adjustment filter can accomplish this task.
Table 1
Parameters that are fixed across quarters.

Parameter Description Value

Panel A: Technology, preference, policy

g SS government spending 0.19
δ0 SS depreciation rate 0.025
δ2 Curvature of utilization cost 0.1
γ SS technology growth 1.003
π SS inflation rate 1.011
β Discount factor 0.998

θp
θp−1 − 1 SS price markup 0.1
θw

θw−1 − 1 SS wage markup 0.1
α Capital share 0.3
b Habit persistence 0.7
η Inverse Frisch elasticity 2
κ Investment adjustment cost 1
ξp Calvo price 0.6
ξw Calvo wage 0.6
χp Price indexation 0.3
χw Wage indexation 0.3
ρR Taylor rule smoothing 0.7
φπ Taylor rule inflation 1.7
φY Taylor rule output 0.2

Panel B: Shock process

ρz Neutral technology 0.95
ρτ Preference 0.95
ρµ Investment technology 0.95
ρπ Inflation target 0.95
ρg Government spending 0.95
100σz Neutral technology 0.9
100στ Preference 1.7
100σµ Investment technology 1.4
100σπ Inflation target 0.1
100σR Monetary policy 0.1
100σg Government spending 1

and the second sets of parameters jointly determine the seasonal
steady state. The third set of parameters are those that characterize
the stochastic shock processes.

The first set of parameters are reported in Panel A in Table 1.
The parameters are picked around the values typically calibrated
or estimated in the literature. The only parameter that deserves
further attention is the parameter that controls κ (investment
adjustment cost). The value (κ = 1) is slightly smaller than the
values usually found in the literature. I assign this value because for
larger adjustment costs, I had to assume implausibly large seasonal
shifts in µ (investment technology) to match the seasonal pattern
of investment observed in the U.S. data.

The second set of parameters are reported in Table 2. I allow the
steady-state values of z (neutral technology), τ (preference), andµ
(investment technology) to vary across quarters. Using a numerical
minimization routine and a nonlinear equation solver, I calibrate
the values so that the seasonal patterns of output, investment, and
hours worked in the model match those in the data. Note that
the average value of each parameter over quarters is ensured to
be unity. Table 3 compares seasonal patterns in the data and in
the model, given the assigned values of the first and second set
of parameters. The model fit is very good. In particular, the model
correctly predicts that seasonality is small in nominal variables
such as the growth rate of real wages and the inflation rate.5
There are two reasons for this success. First, prices and wages are
assumed to be sufficiently sticky. This makes prices and wages
less responsive to seasonal shifts in z, τ , and µ. In fact, if I lower
the Calvo price and wage parameters (which implies less price
and wage stickiness), I find that the seasonal steady states of the
growth rate of wages and inflation become considerably more

5 I fix the steady state of the nominal interest rate to be constant across quarters.
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Table 2
Parameters that vary across quarters.

Parameter Description Q1 Q2 Q3 Q4 Average

zq Neutral technology 0.99 1.00 0.99 1.02 1.00
τq Preference 0.85 1.04 1.01 1.10 1.00
µq Investment technology 0.88 1.06 0.98 1.08 1.00

volatile over seasons. Second, seasonal shifts in τ (preference)
effectively dampen the seasonal fluctuations in the real interest
rate. To understand this, consider the intertemporal Euler equation
as in Liu (2000):

1 = βEt


λt+1

λt


Rt

πt+1


,

where λt denotes the marginal utility of consumption in period t .
Suppose for a moment b = 0 and τt = 1 for all quarters. Then
λt+1/λt = Ct/Ct+1. Given the strong seasonality in consumption
observed in the U.S. data, the real interest rate also has to
exhibit strong seasonality in order to cancel out shifts in λt+1/λt .
Seasonal fluctuations in τ perform a role of seasonal adjustment in
λt+1/λt so that the interest rate becomes relatively stable across
seasons.6

Finally, the third set of parameters are reported in Panel B of
Table 1. The parameters are chosen so that second moments of
the model resemble those of the data. In the Technical Appendix
(available from the author’s website), by comparing moments I
show that overall the model is successful in replicating business
cycle features of U.S. aggregate data. I conclude that the model
serves as an empirically credible data generating mechanism for
exploring the effects of estimating DSGE models using seasonally
adjusted data.

3.2. Estimation using simulated data

Given the parameterization described above, I simulate 200
observations of artificial data sets (after throwing away the initial
100 periods). I employ a Bayesian procedure. The likelihood is
calculated based on the following vector of observables:

[∆ ln Yt , ∆ ln Ct , ∆ lnHt , ∆ ln(Wt/Pt), lnπt , ln Rt ],

where ∆ is the first-difference operator. I conduct two different
estimation experiments. In the first experiment, I estimate the
baseline seasonal DSGE model using seasonally unadjusted data.
In the second experiment, I estimate the aseasonal version of the
baseline DSGE model using seasonally adjusted data. Specifically,
during estimation I impose zq = 1, τq = 1, and µq = 1 for
all quarters q = 1, . . . , 4. All data except for interest rates are
seasonally adjusted using the X-12-Arima filter.7

During estimation, I fix g, δ0, and δ2 to the true value, since
they are difficult to identify. I also fix γ , π , and β , since most

6 The first-order condition for each household’s labor supply indicates that the
marginal utility of consumption is also connected to movements in real wages
and hours. While strong seasonality in hours observed in the data may suggest
that wages also have to display strong seasonality in order to compensate for the
weak seasonality in the marginal utility, this is not necessarily the case in our
environment. In fact, the optimal wage for households adjusting their individual
wages is relatively constant across seasons, since wages are sticky and hence
households care about the influence of their current wage choice on their labor
supply not only in the current quarter but also in future quarters. In other words,
wage-setting policies that respond to seasonal movements of hours only in the
current quarter are sub-optimal.
7 X-12-Arima is a software package developed by the U.S. Census Bureau and is

the official seasonal adjustment procedure of the U.S. government. The seasonal
adjustment is conducted using software called ‘‘Demetra’’, which is provided by
Eurostat.
information for those parameters is contained in the levels of
data and should not be affected much by the seasonal adjustment.
Finally, I fix the steady-state price and wage markup, since I ran
into some numerical difficulties when exploring the posterior
distributions.8 I assume flat priors for all the parameters, subject
to some loose boundary constraints. As pointed out in, e.g.,
Fernández-Villaverde and Rubio-Ramírez (2008), with flat priors
the posterior is proportional to the likelihood function. Thus
the mode of the posterior can be interpreted as the parameter
estimates of a maximum likelihood exercise.

4. Results

The estimates of the posterior distributions based on 200,000
draws from a random-walk Metropolis–Hastings algorithm are
presented in Table 4. There are three things to observe. First,
using seasonally unadjusted data delivers estimates that are quite
close to the true values. This is not surprising, as I am estimating
a correctly specified model using unfiltered data. Second, using
X-12-Arima-filtered data delivers distorted estimates compared
to using unadjusted data. The distortions are pronounced in
some of the key structural parameters, such as α (capital share),
η (inverse of the Frisch labor supply elasticity), κ (investment
adjustment cost), ξw (Calvo wage parameter), and φπ (Taylor
rule coefficient on inflation). Third, the standard deviations of
posterior distributions are smaller when seasonally unadjusted
data are used. As discussed in Barsky and Miron (1989), seasonal
fluctuations provide additional identifying restrictions that are not
present in nonseasonal fluctuations, and hence I am able to obtain
sharper estimates.

In Fig. 1, I report the log-likelihood profiles for a selected set
of parameters given seasonally unadjusted data (solid lines) and
X-12-Arima-filtered data (dashed lines).9 I move each structural
parameter around its calibrated value in each panel while
fixing other parameters at their calibrated values. To facilitate
comparison, I show the true value for each parameter in a vertical
line. Information drawn from Fig. 1 is similar to that drawn from
Table 4. The seasonally unadjusted likelihood peaks around the
true parameter values, while the seasonally adjusted likelihood
delivers considerable biases for many structural parameters.
Directions of the biases are similar to those reported in Table 4.

Some readersmay think thatmy results are sensitive to theway
I seasonally adjust the simulated data. To ensure the robustness
of the results against different choices of seasonal adjustment
filters, I seasonally adjust the data using two alternative methods.
First, I seasonally adjust using the Tramo–Seats filter.10 Second,
I seasonally adjust by directly using the DSGE model.11 To
understand the second procedure, recall that the law of motion for
endogenous variables is given byst,q = Xq(θ)st−1,q−1 + Yq(θ)ϵt ,

wherest,q is a vector that collectsst,q = ln(st,q/sq). This can be
rewritten as st,q = sq exp(st,q). To seasonally adjust st,q, replace a
seasonal steady state from the seasonal model, sq, with a steady

8 More specifically, the problem arises when I estimate the model using
seasonally adjusted data. I also re-estimated themodel by fixing the price andwage
markup at several other values and found that the qualitative features of the results
are unaffected.
9 The log-likelihood profiles for other parameters are given in the Technical

Appendix.
10 Tramo–Seats is a time series analysis package constructed from signal extrac-
tion principles and used extensively at the European Central Bank and Eurostat. The
Bank of Spain’s website (http://www.bde.es/servicio/software/econome.htm) pro-
vides a detailed explanation of the procedure.
11 I thank the Associate Editor for the suggestion.

http://www.bde.es/servicio/software/econome.htm
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Table 3
Seasonal patterns.

Series Data Model
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Output* −6.37 3.08 0.61 2.69 −6.37 3.08 0.61 2.69
Consumption −6.50 2.27 0.09 4.14 −5.59 2.07 0.58 2.94
Investment* −8.12 5.30 0.68 2.14 −8.11 5.30 0.68 2.14
Hours* −3.83 3.00 1.59 −0.59 −3.87 2.97 1.55 −0.64
Wage growth −0.45 −0.53 0.36 0.61 −0.53 0.17 0.06 0.30
Inflation rate 0.09 0.23 −0.14 −0.18 0.40 0.01 −0.06 −0.35
Interest rate −0.03 0.04 0.01 −0.03 0.00 0.00 0.00 0.00

Notes: the table reports percent changes of variables from the previous quarter, taken from sample averages in the data and seasonal steady states in the model.
* Indicate those used as calibration targets.
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Fig. 1. Likelihood profiles: seasonally adjusted vs. unadjusted data. Notes: the figure plots likelihood profiles for seasonally unadjusted data (solid lines) and X-12-Arima-
filtered data (dashed lines). Vertical lines signify true values.
state from the aseasonal model, s: st,q = s exp(st,q). Thus, the
procedure can be thought of as regressing the data on seasonal
dummies, but in a way consistent with the DSGE model. I simply
call this the ‘‘DSGE-based’’ seasonal adjustment. As I show in the
Technical Appendix, for both methods, the posterior estimates are
very similar compared to when X-12-Arima-filtered data are used.

I argue that these distortions in parameter estimates are
important for economic inference because they (1) alter the
transmission mechanism of shocks, (2) affect the business cycle
statistics generated by the model, and (3) bias the results of policy
analysis.

To illustrate the first point, I compare the impulse responses
based on seasonally adjusted and unadjusted estimates. Compar-
ing impulse responses is tricky here, since when seasonality is
present the transmission of shocks differs considerably when the
quarter in which the shock hits is different. Thus I consider the fol-
lowing comparison.

1. From the seasonal DSGE model, I draw parameters from the
posterior distribution of seasonally unadjusted estimates and
compute impulse responses. To compute impulse responses, I
first compute four versions of impulse responses, each differing
with respect to the quarter in which the shock hits. I then
take the average of the four responses. The resulting response
could be thought of as a ‘‘seasonally adjusted’’ impulse response
(i.e., impulse response without conditioning on a season) of the
seasonal model.

2. From the aseasonal DSGE model, I draw parameters from
the posterior distribution of X-12-Arima-filtered estimates and
compute impulse responses.

I note that the ‘‘seasonally adjusted’’ responses generated from the
seasonal model are almost identical to the responses generated
from the aseasonal model when the same parameter values are
used. Comparing the two versions of impulse responses, I can
ask whether the impulse responses using the seasonally adjusted
estimates can successfully predict the average response across
quarters. I plot mean posterior impulse responses and their 90%
point-wise intervals of a neutral technology shock and a monetary
policy shock in Figs. 2 and 3, respectively. Observe that the
true responses generated from the seasonal DSGE model are
very close to the mean responses of the seasonally unadjusted
estimates. The responses are qualitatively similar between the
seasonally adjusted and unadjusted estimates. For example, an
exogenous improvement in technology robustly delivers hump-
shaped increases in output and investment, persistent increases
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Fig. 2. Impulse response: neutral technology shock. Notes: each panel describes the percentage-point response to a one-standard-deviation shock. Computations are based
on 1000 draws from the posterior distributions.
in consumption and real wages, and immediate declines in hours
worked and inflation. An exogenous decrease in the interest rate
leads tomoderate but persistent increases in output, consumption,
investment, hours, and inflation. Note, however, that there are
also some important quantitative differences. For example, the
seasonally adjusted estimates considerably understate output,
consumption, and investment responses to an improvement in
technology. Interestingly, the responses of hours worked are
precisely matched. They also understate output, consumption, and
investment responses to an expansionary monetary policy shock,
but again the responses to hoursworked are preciselymatched. On
the other hand, inflation responses to a monetary policy shock are
overstated.

To substantiate the second point, I compare the second
moments generated from two sources. To generate a first set
of moments, I simulate data from the seasonal model with
parameters fixed at the posterior means of seasonally unadjusted
estimates and then seasonally adjust the data using the X-12-
Arima filter. To generate a second set of moments, I simulate
data from the aseasonal model with parameters fixed at the
means of the X-12-Arima-filtered estimates. In Table 5, I compare
those two sets of moments, together with the moments generated
from the seasonal model under the true parameters.12 Columns

12 Fernández-Villaverde and Rubio-Ramírez (2005) document that moments
generated from linear andnonlinear likelihood estimates are considerably different.
under the label ‘‘Percent standard deviation’’ in Table 5 show
that the seasonally adjusted estimates considerably understate the
standard deviation of output growth and overstate the standard
deviation of hours growth, both by about 0.10. Moreover, they
predict only about half the volatility of investment growth.
Columns under the label ‘‘Corr. with output growth’’ in Table 5
show that correlations with output growth are in general
understated. For example, using seasonally adjusted estimates,
consumption growth correlation is less than half of what is
predicted using the true parameters or seasonally unadjusted
estimates. In evaluating those differences in moments, it is
important to note that when the second set of moments are
generated from the aseasonal model using seasonally unadjusted
estimates (instead of seasonally adjusted estimates), the two
sets of moments are almost identical and close to the true
moments.

Finally I show that bias in point estimates translates into bias in
policy analysis. I consider the following counterfactual policy ex-
periment.13 I compute the percent standard deviations of output
growth and inflation when I increase the inflation response coeffi-
cient in the Taylor rule from the benchmark value (φπ = 1.7), both
for the seasonal model using seasonally adjusted estimates and
the aseasonal model using X-12-Arima-filtered estimates. Again,

13 For other work on policy experiments in misspecified DSGE models, see Chang
et al. (forthcoming) and Cogley and Yagihashi (2010).
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simulated data from the seasonal model are adjusted using the
X-12-Arima filter. The results are shown in Table 6. The season-
ally unadjusted estimates correctly predict the size of changes
in output growth and inflation volatilities in response to the in-
crease in φπ . The seasonally adjusted estimates correctly predict
the changes in inflation volatility. However, they understate the
magnitude of the increase in output growth volatility. While both
true parameters and seasonally unadjusted estimates predict that
the standard deviation of output growth increases by about 30%
compared to the benchmark case when φπ = 10, the seasonally
adjusted estimates predict that it increases by only about 10%.

The results presented so far are important for applied
macroeconomics research. They suggest that the conventional
practice of estimating DSGEmodels using seasonally adjusted data
may lead to biased inference, and hence policy experiments based
on the estimated parameters could be misleading.14

5. Inspecting the sources of distortions

Whydoes estimating theDSGEmodel using seasonally adjusted
data create sizable distortions, as reported in the previous section?

14 I also conducted experiments replacing ∆ ln It with ∆ ln Ct as observables.
In this case, using seasonally adjusted data still leads to substantially distorted
estimates. However, using seasonally unadjusted data, the parameters controlling
the government shock process (ρg and 100σg ) are imprecisely estimated due to a
weak identification problem. For this reason, I focus on results that use ∆ ln Ct as
observables for the rest of the paper.
In the first subsection, I show that the main reason for the
distortions is that the effects of seasonality are not restricted
to the seasonal frequencies, but instead are propagated across
the entire frequency domain. In the second subsection, I argue
that the capital accumulation and labor market frictions in the
model amplify nonlinear interactions between seasonality and
endogenous variables and make the distortions quantitatively
relevant.

5.1. Evidence from the frequency domain

Before turning to a detailed investigation, first it would be
useful to take a look at what the standard seasonal adjustment
methods do to the data. In Fig. 4, I plot the sample periodogram
of the simulated data (seasonally unadjusted, X-12-Arima-filtered,
Tramo–Seats-filtered, and DSGE-based-filtered data) used in the
previous section.15 First, the spectra of seasonally unadjusted data
have spikes at seasonal frequencies


ω = π and, in particular,

π
2


. Second, the seasonal adjustment procedures eliminate those

seasonal spikes but leave the spectral densities at other frequencies
unaffected. These observations suggest that the distortions found
in the previous section are due to the fact that the seasonal

15 The periodogram is smoothed by taking the equally weighted average of
periodograms on 7 frequencies at and in the neighborhood of each frequency ωj =

2π j/T , j = 0, 1, . . . , T − 1.
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Table 4
Posterior estimates.

Parameter Description True Unadjusted X-12

α Capital share 0.3 0.29 (0.0120) 0.50 (0.0431)
b Habit persistence 0.7 0.73 (0.0134) 0.71 (0.0270)
η Inverse Frisch elasticity 2 2.01 (0.1287) 1.01 (0.1646)
κ Investment adjustment cost 1 1.03 (0.0760) 1.49 (0.1905)
ξp Calvo price 0.6 0.60 (0.0024) 0.57 (0.0084)
ξw Calvo wage 0.6 0.59 (0.0061) 0.49 (0.0321)
χp Price indexation 0.3 0.30 (0.0080) 0.33 (0.0311)
χw Wage indexation 0.3 0.30 (0.0112) 0.35 (0.0409)
ρR Taylor rule smoothing 0.7 0.71 (0.0178) 0.72 (0.0302)
φπ Taylor rule inflation 1.7 1.69 (0.1398) 2.11 (0.3506)
φY Taylor rule output 0.2 0.22 (0.0499) 0.34 (0.1047)
ρz Neutral technology 0.95 0.95 (0.0020) 0.95 (0.0059)
ρτ Preference 0.95 0.94 (0.0091) 0.97 (0.0076)
ρµ Investment technology 0.95 0.96 (0.0103) 0.92 (0.0222)
ρπ Inflation target 0.95 0.96 (0.0066) 0.95 (0.0105)
ρg Government spending 0.95 0.95 (0.0109) 0.62 (0.1210)
100σz Neutral technology 0.9 0.90 (0.0452) 0.78 (0.0397)
100στ Preference 1.7 1.72 (0.1010) 1.52 (0.1441)
100σµ Investment technology 1.4 1.68 (0.2194) 1.41 (0.1878)
100σπ Inflation target 0.1 0.09 (0.0120) 0.11 (0.0168)
100σR Monetary policy 0.1 0.10 (0.0054) 0.12 (0.0072)
100σg Government spending 1 0.90 (0.0472) 1.48 (0.1551)
z̃1 Neutral technology Q1 0.97 0.97 (0.0005) –
z̃2 Neutral technology Q2 0.97 0.97 (0.0003) –
z̃3 Neutral technology Q3 0.97 0.97 (0.0001) –
τ̃1 Preference Q1 0.77 0.74 (0.0126) –
τ̃2 Preference Q2 0.95 0.94 (0.0023) –
τ̃3 Preference Q3 0.92 0.92 (0.0037) –
µ̃1 Investment technology Q1 0.81 0.80 (0.0121) –
µ̃2 Investment technology Q2 0.98 0.97 (0.0034) –
µ̃3 Investment technology Q3 0.91 0.91 (0.0069) –

Notes: the table reports the MCMC estimates of posterior means. Standard
deviations are reported in parentheses. The following reparameterizations are used:
z̃q = zq/z4, τ̃q = τq/τ4 , and µ̃q = µq/µ4 for q = 1, 2, 3.

Table 5
Business cycle statistics: seasonally adjusted vs. unadjusted estimates.

Series Percent standard
deviation

Corr. with output
growth

True Unadjusted X-12 True Unadjusted X-12

Output growth 0.96 0.94 0.83 – – –
Consumption growth 0.57 0.57 0.54 0.38 0.31 0.12
Investment growth 2.78 2.87 1.48 0.89 0.88 0.84
Hours growth 0.99 0.98 1.10 0.54 0.53 0.48
Wage growth 0.41 0.41 0.39 0.77 0.77 0.60
Inflation rate 0.73 0.78 0.70 −0.22 −0.21 −0.21
Interest rate 0.69 0.77 0.69 −0.18 −0.15 −0.16

Notes: true moments are calculated by applying the X-12-Arima filter to the
simulated data from the seasonal model, where the parameters are fixed at their
true values. Similarly, seasonally unadjusted moments are calculated by applying
the X-12-Arima filter to the simulated data from the seasonal model, where the
parameters are fixed at the posterior means of seasonally unadjusted estimates.
X-12-Arima moments are calculated using simulated data from the aseasonal
model, where the parameters are fixed at the posterior means of X-12-Arima-
filtered estimates. I did not apply any seasonal adjustment filter to the simulated
data for X-12-Arima moments. All simulations are based on 100 replications of
artificial time series of length 200.

adjustment procedures fail to completely eliminate the effects
of seasonality because seasonality also influences the spectral
densities at other nonseasonal frequencies as well. For the rest of
this section, I will formalize this argument by using a set of tools
developed by previous authors.

In Fig. 5, for the seasonal and aseasonal DSGE models, I plot
the log spectrum of the variables used in the estimation.16 For

16 As in Hansen and Sargent (1993), I use the formula of Tiao and Grupe (1980)
to compute the spectral densities of the seasonal model. The formula provides
an expression for the mean-adjusted periodic process, without conditioning on a
season of the year.
Table 6
Percent standard deviation of variables under alternative values of φπ : seasonally
adjusted vs. unadjusted estimates.

Series φπ

1.7 2.5 5.0 7.5 10.0

Output growth

True 0.96 [1.00] 1.00 [1.04] 1.12 [1.17] 1.21 [1.26] 1.27 [1.32]
Unadjusted 0.95 [1.00] 0.97 [1.03] 1.11 [1.17] 1.20 [1.26] 1.26 [1.33]
X-12 0.86 [1.00] 0.86 [1.00] 0.91 [1.06] 0.95 [1.10] 0.97 [1.12]

Inflation

True 0.73 [1.00] 0.53 [0.73] 0.41 [0.56] 0.36 [0.50] 0.34 [0.47]
Unadjusted 0.77 [1.00] 0.55 [0.72] 0.42 [0.55] 0.37 [0.49] 0.35 [0.46]
X-12 0.84 [1.00] 0.62 [0.74] 0.45 [0.54] 0.42 [0.50] 0.39 [0.46]

Notes: other monetary policy parameters are set to the true benchmark values
(ρR = 0.7, φY = 0.2). The numbers in square brackets indicate the ratios relative to
the benchmark case (φπ = 1.7). For simulation details, see the footnote of Table 5.
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both models the parameters are fixed at the values (reported in
Tables 1 and 2) used to generate data for the experiment in the
previous sections. The log spectrumof the seasonalmodel is shown
in thick solid lines, and the log spectrum of the aseasonal model
is shown in thick dashed lines. Observe that for output growth
and hours growth, there are considerable discrepancies between
the spectra of the seasonal and aseasonal model at the entire
frequency domain. In particular, the discrepancies are noticeable
at high frequencies


frequencies above ω =

π
2


. In those regions,

the seasonalmodel hasmore spectral power. On the other hand, for
nominal variables such aswage growth, inflation rates, and interest
rates, the discrepancies are small and confined to the seasonal
frequencies


ω =

π
2 , π


.17

The intuition behind these discrepancies is relatively straight-
forward. Since seasonality induces agents to reallocate their re-
sources across seasons within a year, the discrepancies of spectra
are noticeable at higher frequencies. Moreover, because of season-
ality, agents have different responses across seasons to the same
shocks, and this additional source of volatility raises the spectral
power of the seasonal model.

Sims (1993) and Hansen and Sargent (1993) recommend
using seasonally adjusted data in estimating rational expectations
models. Their recommendation is based on two arguments. First,

17 The coherence shows a similar pattern of discrepancies. I omit the figures to
conserve space.



H. Saijo / Journal of Econometrics 173 (2013) 22–35 31
0 1 2 3
−13

−12

−11

−10

−9

L
og

 s
pe

ct
ru

m

Output growth

0 1 2 3−14

−13

−12

−11

−10

L
og

 s
pe

ct
ru

m

Consumption growth

0 1 2 3
−13

−12

−11

−10

L
og

 s
pe

ct
ru

m

Hours growth

0 1 2 3−15

−14

−13

−12

−11

L
og

 s
pe

ct
ru

m

Wage growth

0 1 2 3

−14

−12

−10

L
og

 s
pe

ct
ru

m

Inflation rate

0 1 2 3

−16

−14

−12

−10

−8
L

og
 s

pe
ct

ru
m

Interest rate

Seasonal
Aseasonal
Likelihood

−8

Fig. 5. Log spectrum of the seasonal and aseasonal model. Notes: thick solid and dashed lines plot spectra of seasonal and aseasonal models whose parameters are fixed
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likelihood estimates when seasonally adjusted data are used.
directly modeling seasonality may lead to large distortions, if the
mechanism generating seasonality is misspecified. Second, since
the effects of seasonality are likely to be confined to seasonal
frequencies, dampening those seasonal frequencies by seasonally
adjusting the data and trying to fit aseasonal models to the
nonseasonal frequencies leads to fairly accurate estimates. In
my model, the second argument does not hold. The effects of
seasonality propagate across the entire frequency domain, and
hence trying to fit the nonseasonal frequencies using the aseasonal
version of the model leads to substantial distortions in parameter
estimates.18

I consider the implications of the discrepancies of spectral
densities by using a frequency domain approximation for the
probability limits of misspecified maximum likelihood estimators
developed by Hansen and Sargent (1993). The frequency domain
approximation is useful for two reasons. First, it allows me to
isolate the effects of discrepancies of spectral densities from other
factors that potentially bias estimates (e.g., seasonal adjustment
filters or weak identification due to small samples). Second, it
allows me to take a closer look at which particular frequencies are
responsible for the bias.

18 Ghysels (1988) presents a simple production market model demonstrating this
phenomenon. Also see Cogley (2001), Canova (2009), and Canova and Ferrroni
(2011) for a related point concerning the interactions of trend and cyclical
components in DSGE models.
Hansen and Sargent (1993) show that the maximum likelihood
estimator of a parameter vector θ converges almost surely to the
minimizer of the following formula:
A(θ) = A1(θ) + A2(θ) + A3(θ), (1)
where

A1(θ) =
1
2π

 π

−π

ln detG(ω; θ)dω,

A2(θ) =
1
2π

 π

−π

trace[G(ω; θ)−1F(ω)]dω,

A3(θ) = [µ − µ(θ)]′G(0; θ)−1
[µ − µ(θ)].

µ is the population mean of a stationary process and F(ω) is
the spectral density function at frequency ω. µ(θ) and G(ω; θ)
are the model-based mean and spectral density function. A1(θ)
captures the variance of the model-based one-step forecast errors.
A2(θ) and A3(θ) measure the distance between data and model-
based spectral densities and means, respectively. In implementing
expression (1), it is useful to approximate the integrals in A1(θ)
and A2(θ) by Riemann sums:

A1(θ) =
1
T

T−1
j=0

ln detG(ωj; θ),

A2(θ) =
1
T

T−1
j=0

trace[G(ωj; θ)−1F(ωj)],

where ωj = 2π j/T , j = 0, 1, . . . , T − 1.
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The column labeled ‘‘Baseline’’ in Table 7 reports the probability
limits of maximum likelihood estimates when seasonally adjusted
data are used. To compute the probability limits, I apply the
Riemann sum approximation of formula (1), with T = 200
and G(ω; θ) generated from the aseasonal DSGE model and
F(ω) generated from the seasonal DSGE model. Zero weight is
assigned to frequencies at and near the seasonal frequencies19
and deterministic seasonal means are removed by dropping A3(θ)
from formula (1). This allows me to mimic an ‘‘ideal’’ seasonal
adjustment procedure in the frequency domain.

The biases in parameter estimates are similar to those reported
in Table 4, although their magnitudes are slightly smaller. In
Fig. 5, the spectral density of the asymptotic maximum likelihood
estimates is plotted in solid lines. In order to achieve better fit in
output and hours growth, the likelihood estimator tries to shift
spectral power from low to high frequencies by distorting the
parameter estimates.20

Another useful measure to examine is a version of the
likelihood-ratio statistic developed in Christiano and Vigfusson
(2003):

λ = 2[A(θtrue) − A(θ∗)],

where θtrue is a vector of parameters fixed at their true values and
θ∗ is a vector of parameters fixed at their estimated values (in this
case asymptotic maximum likelihood estimates). Define

λ(ω) = ln detG(ω; θtrue) − ln detG(ω; θ∗)

+ trace[(G(ω; θtrue)
−1

− G(ω; θ∗)−1)F(ω)],

so that

λ = λ(0) + 2
T/2−1
j=1

λ(ωj) + λ(π).

The cumulative likelihood ratio is defined as

Λ(ω) = λ(0) + 2

ωj≤ω

λ(ωj), 0 < ω < π,

Λ(0) = λ(0),
Λ(π) = λ.

If bias of the estimated parameters is due to discrepancies of
seasonal and aseasonal spectra in some specific frequency region,
we should see a sharp increase in Λ(ω). Fig. 6 shows that there is
a sharp increase at medium and high frequencies.21 On the other
hand, there is a mild decrease in the ratio at low frequencies. This
observation confirms that the likelihood estimator is distorting the
estimated parameters in order to achieve a better fit at higher
frequencies.

5.2. The role of frictions

My model features a number of real and nominal frictions. The
frictions magnify the nonlinear interactions between seasonality
and endogenous variables, which in turn leads to larger discrep-

19 I impose zero weight to the 9 frequencies at and in the neighborhood of ω =

π/2, and alsoω = π and the 4 next lower frequencies. The results are robust to the
choice of the number of frequencies assigned zero weight.
20 As pointed out in Cogley (2001), it is difficult to develop intuition of a
direction of the bias in a particular parameter when all parameters are allowed to
adjust simultaneously. This is because sometimes the partial effects of parameter
adjustments interact in ways that counteract one another. For example, while the
upward bias in α (capital share) and the downward bias in η (inverse of the Frisch
labor supply elasticity) act inways that raise the spectral power of output and hours
growth, the upward bias in κ (investment adjustment cost) dampens it.
21 Note that since I omit the seasonal frequencies and their neighborhood during
computation of the probability limits, the cumulative likelihood ratio is flat in that
region.
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ancies of spectra between the seasonal and aseasonal DSGE mod-
els. Thus, to understand the source of bias, it is crucial to know the
quantitative role of each friction in the model. To this end, I turn
off each friction of the model, recompute the probability limits,
and compare the resulting biases of the estimates with the base-
line model. I identify two key frictions – the investment adjust-
ment cost and the nominal wage rigidity – which play important
roles.

In the column in Table 7 labeled ‘‘No inv. adj.’’, I report
the probability limits of the maximum likelihood estimator
when the investment adjustment cost is turned off (κ = 0).
Since the magnitude of the adjustment cost does affect the
seasonal steady states, I recalibrate seasonal shifts in neutral
and investment technology and preference in order to match
the data. I also adjust the parameters characterizing stochastic
shock processes so that the model without the adjustment cost
generates realistic second moments.22 The estimated parameters
come closer to the true values compared to those reported
in the column labeled ‘‘Baseline’’. In particular, for some key
parameters, including α (capital share), η (inverse of the Frisch
labor supply elasticity), ξw (Calvo wage parameter), and φπ

(Taylor rule coefficient on inflation), distortions disappear almost
completely. In the column labeled ‘‘No wage rig.’’, I report the
probability limits when the wage rigidity is (almost) turned off
(ξw = 0.01, χw = 0). Again, I recalibrate the seasonal
shifts in technology and preference and readjust the parameters
characterizing the stochastic shock processes. Similar to the
case when the investment adjustment cost is turned off, the
distortions are quite small (except for the persistence parameter
of government spending, ρg , which is considerably understated). I
have also examined model specifications where habit persistence
is turned off (b = 0), capital utilization is turned off (δ2 = 1000),
price rigidity is turned off (ξp = 0.01, χp = 0), price and wage
indexation is turned off (χp = 0, χw = 0), and the Taylor rule
responding to a deviation of output (rather than output growth)
from the steady state. None of these alternative specifications
delivered precise estimates.23 I view these as evidence showing

22 Without adjustment, the volatilities of output and hours growth become
extremely large. Moreover the spectra of those variables reach their peak at the
highest frequency, which is the opposite of what we see in the data (Granger,
1966). As pointed out by Christiano and Todd (2002), since the weight assigned
in the approximation criterion to the spectra is proportional to the level of the
corresponding empirical estimates (expression (1)), even a very small discrepancy
in the spectrum at higher frequencies creates implausibly large parameter biases.
23 Details of the results are available from the author upon request.
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Table 7
Probability limits of the likelihood estimator when seasonally adjusted data are used.

Parameter Description Baseline No inv. adj. No wage rig. Capital adj. Labor adj.
True Plim True Plim True Plim True Plim True Plim

α Capital share 0.3 0.46 0.3 0.31 0.3 0.27 0.3 0.39 0.3 0.26
b Habit persistence 0.7 0.67 0.7 0.70 0.7 0.71 0.7 0.68 0.7 0.70
η Inverse Frisch elasticity 2 1.24 2 2.15 2 1.99 2 2.07 2 1.94
κ Investment adjustment cost 1 1.25 – – 1 0.89 – – 1 0.77
κK Capital adjustment cost – – – – – – 24 43.45 – –
κH Labor adjustment cost – – – – – – – – 0.8 0.80
ξp Calvo price 0.6 0.57 0.6 0.60 0.6 0.60 0.6 0.58 0.6 0.63
ξw Calvo wage 0.6 0.54 0.6 0.60 – – 0.6 0.60 – –
χp Price indexation 0.3 0.31 0.3 0.29 0.3 0.29 0.3 0.32 0.3 0.19
χw Wage indexation 0.3 0.32 0.3 0.31 – – 0.3 0.32 – –
ρR Taylor rule smoothing 0.7 0.71 0.7 0.70 0.7 0.70 0.7 0.72 0.7 0.66
φπ Taylor rule inflation 1.7 1.81 1.7 1.72 1.7 1.72 1.7 1.77 1.7 1.45
φY Taylor rule output 0.2 0.22 0.2 0.20 0.2 0.21 0.2 0.21 0.2 0.10
ρz Neutral technology 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.46 0.95 0.95
ρτ Preference 0.95 0.96 0.95 0.95 0.95 0.95 0.95 0.96 0.95 0.94
ρµ Investment technology 0.95 0.92 0.95 0.79 0.95 0.96 0.95 0.86 0.95 0.96
ρπ Inflation target 0.95 0.94 0.95 0.96 0.95 0.95 0.95 0.95 0.95 0.96
ρg Government spending 0.95 0.86 0.95 0.92 0.95 0.42 0.95 0.92 0.95 0.28
100σz Neutral technology 0.9 0.87 0.4 0.40 1.3 1.32 0.9 0.18 1.2 1.22
100στ Preference 1.7 1.51 2 2.03 1.6 1.70 1.7 1.71 1.2 1.23
100σµ Investment technology 1.4 1.32 0.1 0.05 1.4 1.69 1.4 9.78 2 2.37
100σπ Inflation target 0.1 0.10 0.01 0.01 0.08 0.09 0.1 0.11 0.06 0.08
100σR Monetary policy 0.1 0.11 0.01 0.01 0.1 0.10 0.1 0.10 0.1 0.10
100σg Government spending 1 1.94 1 1.68 1 1.38 1 1.39 1 1.36
that the investment adjustment cost and the nominalwage rigidity
are the key frictions responsible for creating distortions.

Given the finding, readers might guess that other forms of
capital accumulation or labor market frictions may contribute to
creating distortions aswell. This is indeed the case. To formalize the
argument, I consider two alternative model specifications where
(a) the investment adjustment cost is replaced with a capital
adjustment cost and (b) the sticky wage assumption is replaced
with a labor adjustment cost, and see whether the seasonal
adjustment creates distortions.

For the capital adjustment cost, consider

K p
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p
t−1 + µt


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K p
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where for the functional form for S, I assume
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Similar specifications for the capital adjustment cost were used,
for example, in Bernanke et al. (1999) and Chari et al. (2000).
I set κK = 24 so that the moments generated from the
capital adjustment cost model are similar to those generated
from the baseline model. The column in Table 7 labeled ‘‘Capital
adj’’. reports the probability limits of the maximum likelihood
estimator. As in the baseline model, the capital adjustment cost
model delivers sizable distortions, although their directions and
magnitudes are somewhat different. For example,α (capital share),
κ (capital adjustment cost), and 100σµ (volatility parameter of
the investment technology shock process) are overstated. Also ρz
and 100σz (persistence and volatility parameters of the neutral
technology shock process) are understated.

To investigate the role of the labor adjustment cost, I simply add
a quadratic disutility term into the household’s utility function:

Et
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I impose κH = 0.8 and recalibrate the seasonal shifts in technology
and preference and readjust the parameters characterizing the
stochastic shock processes. The column in Table 7 labeled ‘‘Labor
adj’’. reports the probability limits of the maximum likelihood
estimator. The labor adjustment cost model delivers considerable
biases. For example, κ (investment adjustment cost), χp (price
indexation), and φπ and φY (Taylor rule coefficients on inflation
and output growth) are understated. ρg and 100σg (parameters
characterizing the stochastic process of government spending
shocks) are also imprecise. The results of the capital adjustment
cost model and the labor adjustment cost model suggest that
frictions that create distortions may not be limited to those I
assumed in the baseline model.

6. Practical considerations

So far I have argued that in current DSGE models, distortions
due to misspecification arising from ignoring seasonality could be
potentially large. However, this claim is based on an experiment in
a considerably restricted setting. In particular, I have assumed that
an econometrician has complete knowledge about the structure
of the economy and the mechanism generating seasonality. In
practice, such knowledge is not fully available. A researcher who
ignores seasonality could be even worse off if she introduces
a grossly misspecified mechanism of seasonality (Sims, 1993;
Hansen and Sargent, 1993). Thus, researchers face an important
trade-off on whether to explicitly model seasonality or not. In this
section I propose a simple procedure that helps researchers in
making this decision, and I demonstrate how to use it.

A key component of the proposed procedure is to allow
a coherent comparison between seasonal and aseasonal DSGE
models. Let yt,q be a vector of time-series data in time t at quarter
q. Then the mapping of data from the model is,

ln yt,q =st,q + ln sq, (2)

for the seasonal model and

ln yt,q =st + ln s + ln kq, (3)
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for the aseasonal model. Here kq is a vector of seasonal dummies
that is meant to capture seasonal variations in the data that
cannot be explained by the aseasonal model. The orthogonal
decomposition betweenst and kq is consistent with a standard
practice of seasonal adjustment. kq is jointly estimated with
structural parameters of the aseasonal model. Then a researcher
can evaluate the fit across specifications by comparing the
marginal likelihoods.24

I apply the mappings (2) and (3) to the simulated data used in
the main experiment. The goal of the exercise is to demonstrate
the usefulness of the approach for determining whether or not
to explicitly model seasonality when there is potential danger of
misspecification. I consider three examples of misspecification.
The first example is the misspecification arising from ignoring
seasonality (i.e., misspecification arising from using the aseasonal
model), which has been the main focus of this paper. The second is
themisspecification arising from the structure of the economy that
is not directly related to the mechanism generating seasonality. In
particular, I assume that a researcher thinks that the central bank
responds to the output gap but not to output growth:

Rt

R
=


Rt−1

R

ρR


πt

π ⋆
t

φπ

Yt

Yq

φY
1−ρR

eϵR,t ,

ϵR,t ∼ N(0, σ 2
R ).

In the third example, the mechanism generating seasonality is
misspecified. I assume that a researcher thinks that the seasonality
in preference originates from shifts in the habit term bq, but not τq.
To compare the biases across specifications in a systematic way, as
in Ferroni (2011) I consider the following quadratic loss function
that measures overall distortions:

QL = (θ − θtrue)Σθ (θ − θtrue)
′,

where θ = 1/N
N

i=1 θi andΣθ = 1/N
L

l=1(θ −θi)(θ −θi)
′. Thus

a larger value of quadratic loss implies larger bias.25
Table 8 presents the results under various model specifications.

Two things emerge. First, when seasonality is explicitly modeled,
parameter biases are likely to be modest even when other parts
of the model are misspecified. In contrast, when seasonality is not
modeled, the biases are large. This suggests that misspecification
arising from ignoring seasonality is practically important in
potentially misspecified models. For example, when both the
Taylor rule and the mechanism for seasonality is misspecified, the
quadratic loss is 0.0209. This is less than half compared to when
seasonality is notmodeled (0.1238 and0.0791).26 Second, although
a smaller marginal likelihood does not necessarily imply larger
parameter biases, it appears to be a relatively good indicator for a
measure of biases. Other forms ofmisspecifications not considered
here may imply substantially larger biases. Nevertheless, a
researcher can diagnose the presence of misspecification by
comparing marginal likelihoods.

7. Conclusion

Conventional wisdom among economists is that seasonal
adjustments represent an innocuous data filtering that allows
econometricians to focus on the estimation of objects of interest
with little distortion. In this paper, I have challenged that view.

24 In this respect, the proposed procedure resembles the one-step approach of
trend estimation in Ferroni (2011).
25 In the vectors θ and θtrue , I only include the structural parameters that are
common between the seasonal and aseasonal models.
26 When X-12-Arima-filtered data are used (Table 4), the quadratic loss is 0.0669.
Table 8
Comparison across alternative model specifications.

Source of misspecification Marginal likelihood Quadratic loss
Seasonality
notmodeled

Misspecified
Taylor rule

Misspecified
seasonality

5824.4 0.0039
✓ 5802.3 0.0157

✓ 5788.4 0.0135
✓ ✓ 5761.8 0.0209

✓ 5259.2 0.1238
✓ ✓ 5226.4 0.0791

Notes: the marginal likelihoods are calculated based on the modified harmonic
mean estimator by Geweke (1999). For the truncation value I use p = 0.5. Other
values deliver similar results.

Using a state-of-the-art DSGE model that can match salient
features of U.S. seasonal and nonseasonal fluctuations, I showed
that estimation using seasonally adjusted data leads to important
distortions. The problem cannot be mitigated by constructing
alternative seasonal adjustment filters, as the distortions still arise
in large sample environments with ‘‘ideal’’ filters. This is because
the effects of seasonality, which are magnified by several frictions
built into the model, are propagated across the entire frequency
domain.

One limitation of the analysis in this paper is that I have focused
my attention on a full-information likelihood approach. Since
the main reason for the distortions is that agents have different
responses to shocks across seasons, we may be able to obtain
better estimates by using only moments that do not condition on a
season. For example, as I mentioned in Section 4, since ‘‘seasonally
adjusted’’ impulse responses from the seasonalmodel and impulse
responses from the aseasonal model are almost identical when the
same parameter values are used, it seems reasonable to perform
indirect inference by matching impulse responses of seasonally
adjusted data and the aseasonal model. A systematic investigation
of this idea is left for future research.
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