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Abstract

Existing studies on uncertainty shocks focus on economy-wide shocks that affect all sectors
symmetrically and simultaneously. However, as highlighted by the recent COVID-19 pandemic,
a rise in uncertainty can exhibit substantial heterogeneity across sectors, with some experienc-
ing significantly larger increases than others. In this paper, I study how these sector-specific
volatility shocks propagate and affect aggregate outcomes. First, using industry-level data, I es-
timate sectoral TFP processes allowing for stochastic volatility. I show that sectoral TFP display
nontrivial fluctuations in volatility even after controlling for economy-wide variations. Dur-
ing recessions, the number of sectors experiencing an increase in volatility sharply increases.
Second, I simulate the impact of sector-specific volatility shocks in a calibrated multi-sector
NewKeynesianmodel that features input-output networks. I find that sectoral volatility shocks
generate contractions in aggregate economic activity. The key transmission mechanism is the
network precautionary pricing multiplier: input-output networks amplify and propagate firms’
motive to preemptively raise prices in response to heightened uncertainty.
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1 Introduction

Business analysts and policymakers have emphasized fluctuations in uncertainty as a significant
contributor to aggregate fluctuations. In most studies, fluctuations in uncertainty are economy-
wide shocks; they are changes in aggregate risk, firm-level volatility, or policy uncertainty, but
they affect all sectors symmetrically and simultaneously. In reality, however, a significant rise in
uncertainty often appears to be concentrated in several specific sectors. For example, during the
Great Recession, a substantial increase in risk seems to have originated from financial industries.
The COVID-19 pandemic in 2020 has significantly raised uncertainty surrounding the tourism and
recreation industries due to lockdowns and people altering their behavior. Motivated by these ob-
servations, in this paper I relax the conventional assumption of economy-wide uncertainty shocks
and study the aggregate implications of the sector-specific volatility shocks using industry-level
data and a multi-sector business cycle model.

In the first part of the paper, I construct a data set for quarterly U.S. sectoral total-factor produc-
tivity (TFP) and use it to estimate parameters and historical realizations of aggregate and sector-
specific TFP volatility shocks. The focus on sectoral TFP volatility is motivated by prior research,
such as Acemoglu et al. (2012), which shows that variations in sectoral TFP can account for signif-
icant aggregate fluctuations in a networked economy. I interpret an unexpected rise in volatility
in these TFP innovations as a TFP uncertainty shock that represents an increase in risk. Fluctua-
tions in TFP volatility are allowed to be sector-specific, meaning that a change in uncertainty in one
sector could be distinct from changes in uncertainty in other sectors or at the economy-wide level.

Based on the estimated sectoral TFP volatility process, I provide four key facts about sector-
specific volatility shocks. First, I find that sector-specific TFP,which controls for economy-wide TFP
variations, exhibits fluctuations in volatility that are as sizable as the economy-wide TFP volatil-
ity. Second, sectoral uncertainty is countercyclical at the macro level: the number of sectors ex-
periencing increased TFP volatility surges during recessions. For example, in 2009:Q1 (the Great
Recession) and 2020:Q2 (the COVID-19 recession), 22 and 30 out of 66 sectors, respectively, expe-
rienced innovations in TFP volatility exceeding one standard deviation. This is significantly higher
than during expansions, where, on average, only 2 sectors per quarter experience such volatility
shocks. Third, despite the overall countercyclicality, the identity of the sectors experiencing spikes
in TFP volatility displays substantial heterogeneity. Moreover, the specific sectors affected maps
into the historical narratives of recessions. For instance, sectors such as “Federal Reserve banks,
credit intermediation, and related activities” and “Management of companies and enterprises”
were hit with the largest innovation to TFP volatility during the Great Recession. In contrast, dur-
ing the COVID-19 recession, sectors like “Air transportation” and “Amusements, gambling, and
recreation industries” saw the most significant increases in volatility. Fourth, sectoral uncertainty
is stagflationary at the local level. Specifically, I estimate local projections (Jordá (2005)) that in-
clude sector-specific TFP level and volatility shocks for a panel of sectors and show that innovations
to sectoral TFP volatility reduce the sector’s own gross output and raise the price level.

Motivated by these empirical findings, I consider a multi-sector New Keynesian model similar
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to Bouakez et al. (2009) and Pasten et al. (2020) to study macroeconomic implications of sector-
specific TFP volatility shocks. The model features nominal rigidities and input-output networks,
both of which are critical ingredients. First, previous research that use quantitative DSGE models
to study aggregate uncertainty shocks, such as Fernández-Villaverde et al. (2015) and Basu and
Bundick (2017), have found that nominal rigidities propagate and amplify the impact of uncer-
tainty shocks. Thus, it is of interest to examine whether a similar transmission mechanism takes
place in the case of sector-specific volatility shocks as well. Second, it is important to consider
input-output networks because they could propagate the effects of sectoral volatility shocks across
sectors through linkages.

I first analyze a simplified version of the quantitative model to gain analytical insights into
how sectoral volatility shocks propagate through the input-output network. In this framework,
nominal rigidities play a crucial role: an increase in uncertainty, such as from sectoral TFP volatility
shocks, induces firms to price their goods higher than they would in the absence of an increase in
uncertainty. The intuition behind this nominal pricing bias follows from the firm’s self-insurance
behavior (Fernández-Villaverde et al. (2015)). When uncertainty rises, firms hedge against the risk
of pricing their goods too low relative to marginal cost by raising prices. This occurs because the
profit loss from setting prices too high (and selling less) is smaller than the loss from setting prices
too low (and selling more). Consequently, sectoral volatility shocks exhibit stagflationary effects,
leading to higher prices and, under sufficiently accommodative monetary policy, lower aggregate
GDP. I explicitly characterize the equilibrium elasticities of sectoral volatility shocks on sectoral
prices and aggregateGDP. These elasticities depend on the convolution of nominal rigidity, sectoral
sizes, steady-state sectoral volatility, and the positions of shocked sectors within the input-output
network. I identify a novel theoretical mechanism: through input-output linkages, the network
precautionary pricing multiplier amplifies and propagates firms’ motive to preemptively raise prices
in response to heightened uncertainty.

To quantitatively evaluate the aggregate impact of sectoral volatility shocks, I consider a 66-
sectors version of the model and calibrate it to U.S. sectoral and macro facts. To solve the model,
I use the risk-adjusted log-linearization method as in Jermann (1998), Uhlig (2010), Dew-Becker
(2012), Malkhozov (2014), and others. The advantage of this method is that it captures the ef-
fects of sectoral volatility shocks through the risk-adjustment terms while preserving tractability.
As in Bianchi et al. (2023), the method also allows me to explicitly decompose the propagation
mechanism of volatility shocks into several distinct endogenous risk wedges. I analyze the im-
pulse response functions (IRFs) to aggregate and sector-specific TFP volatility shocks. Both types
of shocks lead to a contraction in aggregate GDP, consumption, investment, and hours worked,
accompanied by an increase in inflation and nominal interest rates. The contraction in economic
activity resulting from sector-specific volatility shocks is comparable in magnitude to that caused
by policy uncertainty shocks simulated in structural models (Mumtaz and Zanetti (2013), Born
and Pfeifer (2014), Fernández-Villaverde et al. (2015)). Notably, the response to sector-specific
TFP volatility shocks is significantly larger than to aggregate volatility shocks, with the cumulative
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GDP impact being five times greater for the former. By isolating endogenous risk wedges, I show
that the nominal pricing bias channel identified in the analytical model is the primary driver of the
IRF to sector-specific TFP volatility shocks. Furthermore, the network precautionary pricingmulti-
plier is crucial in amplifying this channel: without input-output linkages, the IRF to sector-specific
volatility shocks becomes negligible. The input-output linkages also play a key role in determin-
ing the impact of sector identity on the aggregate effects of sectoral volatility shocks. For example,
under the baselinemodelwith input-output linkages, the top fivemost responsive sectors to sector-
specific shocks are “Securities, commodity contracts, and investments”, “Oil and gas extraction”,
“Computer and electronic products”, “Housing”, “Other real estate”. When input-output linkages
are removed, the ranking changes dramatically, with sectors such as “Insurance carriers and related
activities”, “Apparel and leather and allied products”, “Motor vehicle and parts dealers”, “Ambu-
latory health care services”, entering the top five, leaving only “Securities, commodity contracts,
and investments” common across both cases.

This paper is related to two strands of the literature. First, the paper contributes to the expan-
sive literature on uncertainty shocks, such as Bloom (2009), Fernández-Villaverde et al. (2011),
Fernández-Villaverde et al. (2015), Bachmann and Bayer (2013), Born and Pfeifer (2014), Chris-
tiano et al. (2014), Basu and Bundick (2017), and Bloom et al. (2018). I consider a network econ-
omy, which allows me to study sector-specific uncertainty shocks and their propagations instead
of the economy-wide uncertainty shocks as in the previous literature. Second, this paper belongs
to the fast-growing research agenda that studies how microeconomic shocks drive aggregate fluc-
tuations, such as Gabaix (2011), Foerster et al. (2011), and Acemoglu et al. (2012). In particular,
since this paper studies how price stickiness critically affects the macroeconomic effects of sec-
toral volatility shocks, it is closely related to Pasten et al. (2024) and Bouakez et al. (2023), which
examine the transmission of sector-specific shocks in the presence of nominial rigidities and input-
output linkages. The paper is also related to Baqaee and Farhi (2019), who explore how the aggre-
gate implications of sectoral productivity shocks in an efficient, non-linear environment depend on
micro-level details. I focus on a particular form of non-linearity, namely, sectoral volatility shocks,
in an inefficient economy. Finally, Kopytov et al. (2024) consider the impact of an aggregate change
in uncertainty in an efficient economy with endogenous network formation. In contrast, my paper
analyzes the impact of a sector-specific change in uncertainty in an environment with nominal fric-
tions. In future research itwould be interesting to study the interaction of themechanism identified
in Kopytov et al. (2024) and this paper.

The rest of the paper is organized as follows. Section 2 estimates sectoral TFP processes with
stochastic volatility and explores their key properties. Section 3 introduces the quantitative model
and Section 4 analyzes a simplified version to derive analytical insights. Section 5 describes the
solution methodology and calibration strategy. The main results are presented in Section 6, and
Section 7 concludes.
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2 Sector-specific Volatility Shocks: Measurement and Facts

In this section, I construct a data set for quarterly U.S. sectoral productivity and use it to estimate
the parameters of the stochastic volatility processes and historical realizations of sectoral volatil-
ity shocks. Based on the estimation results, I then provide four stylized facts regarding sectoral
volatility shocks.

In my baseline empirical analysis, the sample period is from 2006:Q2 to 2022:Q1.1 Thus, my
sample encompasses two recessions: the Great Recession (2008:Q1–2009:Q2) and the COVID-19
recession (2020:Q1–2020:Q2). I consider 66 sectors for both the empirical analysis and the cali-
bration exercise below. This approximately corresponds to the 3-digit disaggregation level in the
NAICS code, excluding the government industries. Tables A.1 in the Appendix list these 66 sec-
tors.2

2.1 Measuring Sector-specific Volatility Shocks

Sectoral TFP Data. The two main challenges in measuring time-varying TFP volatility at the in-
dustry level are: (i) the measurement of sectoral productivity needs to take into account the con-
tribution of intermediate inputs to sectoral output and (ii) the data should be measured at least
in a quarterly frequency to mitigate the time-aggregation bias (Bloom (2009)). The integrated
industry-level production account (KLEMS) by the BEA provides industry-level productivity se-
ries that controls for intermediate inputs but ismeasured in an annual frequency so it is not suitable
for my purpose. Instead, the approach I take in this paper is to leverage the optimality conditions
implied by the firms’ cost minimization problem to control for the impact of intermediate inputs.
Let me now describe the method in detail.

First, to measure sectoral TFP, I consider the following production function:

yi,t = ezi,t(ki,t−1)
αk
i (hi,t)

αh
i (m̃i,t)

1−αk
i −αh

i ,

where yi,t is the gross output of sector i at period t, zi,t is the TFP level, ki,t−1 is the capital stock,
hi,t is hours worked, and m̃i,t is the combined intermediate inputs,

m̃i,t =

[
n∑

i=1

a
1

εm
ij (mij,t)

εm−1
εm

] εm
εm−1

, (1)

where mij,t is sector j goods used as intermediate inputs and εm > 0 controls the elasticity of
1The starting point is dictated by the availability of quarterly aggregate hours worked data (for all employees) at the

sectoral level.
2There are several alternative approaches that could potentially measure actual uncertainty that agents face, such as

using survey data or VIX. The advantage of my approach relative to the alternatives is that my approach allows me to
study uncertainty shocks at a more granular level.
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substitution. The production function exhibits constant returns to scale:
n∑

j=1

aij = 1, (2)

where αk
i > 0, αh

i > 0, aij ≥ 0 for all j. TFP is then measured using the standard accounting
method:

zi,t = ln yi,t − αk
i ln ki,t−1 − αh

i lnhi,t − (1− αk
i − αh

i ) ln m̃i,t.

To measure yi,t, I use the quarterly sectoral real gross output series by the BEA. I measure
sectoral capital stock using the chain-type quantity indexes for net stock of private fixed assets
by industry, provided by the BEA. Since the series are available only at an anuual frequency, I
interpolate them into a quarterly frequency by appplying cubic spline interpolation.3 I measure
sectoral hours worked, hi,t, using the industry-level quarterly aggregate hours worked series of all
employees, provided by the BLS.

I estimate the values of factor shares {αk
i }ni=1, {αh

i }ni=1, and the input-output matrix {aij}ni,j=1

from the “use tables” of the input-output accounts constructed by the BEA. The use table shows
the uses of commodities by sectors as intermediate inputs and their final uses. It also shows the
sector’s value added components, which is the labor income (compensation to employees) and
capital income (gross operating surplus). The sum of the value of intermediate inputs and value
added, given by a column sum of the table, is the industry’s gross output. Thus, to compute the
intermediate shares aij , I compute the value of payments from sector i to sector j divided by sector
i’s gross output. To obtain αk

i and αh
i , I compute the ratios of capital and labor income to gross

output, respectively. Finally, I take the averages of these objects ({αk
i }ni=1, {αh

i }ni=1, and {aij}ni,j=1)
calculated year by year from the use table from 2006 to 2020.

Finally, I explain how I measure the sectoral use of intermediate inputs, m̃i,t. BEA provides
data for quarterly nominal expenditures on total intermediate inputs for each sector,∑n

j=1 Pj,tmij,t,
where Pj,t is the nominal price for goods j. I first convert them into real terms by dividing them
by the GDP deflator Pt so now I have total real expenditures on inputs,∑n

j=1 pj,tmij,t, where pj,t ≡
Pj,t/Pt is the real price for goods j. Next, the optimality condition for the firms’ cost minimization
problem given the CES aggregator for intermediate inputs (1) imply

n∑
j=1

pj,tmij,t = pmi,tm̃i,t,

where

pmi,t ≡

 n∑
j=1

aijp
1−εm
j,t

 1
1−εm

, (3)

3The advantage of cubic spline interpolation compared to linear interpolation is that the former produces smoother
and better-behaved series relative to the latter.
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which can be computed given {aij}ni,j=1 and the data on pj,t. I set εm = 0.1 following the estimation
result by Atalay (2017). Then we can compute the intemediate input use as

ln m̃i,t = ln

 n∑
j=1

pj,tmij,t

− ln pmi,t.

Stochastic Volatility Process. Following the approach by Fernández-Villaverde et al. (2011), Born
and Pfeifer (2014), and Fernández-Villaverde et al. (2015), I model uncertainty shocks as an inno-
vation to an AR(1) stochastic volatility process. Consider first the TFP. I assume that sectoral TFP
can be decomposed into an aggregate, economy-wide component z̄t and a sector-specific compo-
nent uzi,t:

zi,t = z̄t + uzi,t, (4)

where the aggregate component z̄t is the weighted cross-sectional average of sectoral productivity,
z̄t ≡

∑n
i=1

(
GDPi,t

GDPt

)
zi,t, where GDPi,t is sectoral GDP (i.e. sectoral value-added) and GDPt is

aggergate GDP. z̄t and sector-specific TFP component uzi,t follow independent AR(1) processes
with stochastic volatility:

z̄t = a+ τ1t+ τ2t
2 + ρz̄ z̄t−1 + eσz̄,t−1εz̄,t, εz̄,t ∼ N(0, 1), (5)

uzi,t = ai + τ1,it+ τ2,it
2 + ρziuzi,t−1 + eσi,t−1εzi,t, εzi,t ∼ N(0, 1), i = 1, . . . , n, (6)

where a and ai control the unconditional mean of the TFP process and τ1, τ2 and τ1,i, τ2,i control
the linear-quadratic trends. I allow for sector-specific trend terms in order to capture industry-
level differences in long-term TFP growth. Following Bloom et al. (2018), the timing in (5) and
(6) reflects the assumption that firms know in advance the volatility of the shocks next period. In
turn, the (log of) standard deviations σz̄,t and σi,t follow AR(1) processes with

σz̄,t = (1− ρσz̄)σz̄ + ρσz̄σz̄,t−1 + ηz̄εσz̄ ,t, εσz̄ ,t ∼ N(0, 1), (7)
σi,t = (1− ρσi)σi + ρσiσi,t−1 + ηziεσi,t, εσi,t ∼ N(0, 1), i = 1, . . . , n, (8)

where σz̄ and σi, i = 1, . . . , n, are the unconditional means of the standard deviations of the TFP
level shocks. ηz̄εσz̄ ,t is the aggregate TFP volatility shock and ηziεσi,t are the sectoral TFP volatility
shocks, where ηz̄ and ηzi , i = 1, . . . , n, are the standard deviations of the TFP volatility shocks. I do
not consider contemporaneous correlations between a level shock and a volatility shock (between
εz̄,t and εσz̄ ,t or between εzi,t and εσi,t). This assumption allows me to study the independent
effects of sectoral volatility shocks εσi,t transparently without the added impact of level shocks
through correlations. Similarly, I do not consider contemporaneous correlations among volatility
shocks (among εσz̄ ,t and εσi,t, i = 1, . . . , n). This assumption allows me to study the independent
effects of each sectoral volatility shock εσi,t transparently without the added impact of volatility
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Table 1: Summary of posterior means

A. Aggregate TFP ρz̄ σz̄ ρσz̄ ηz̄
0.51 -6.56 0.63 0.50

B. Sector-specific TFP ρzi σi ρσi ηzi
Cross-sectional median 0.81 -5.27 0.62 0.46

(10th percentile, 90th percentile) (0.68, 0.90) (-5.95, -4.64) (0.49, 0.77) (0.43, 0.52)

Notes: The Table reports the posterior mean estimates of aggregate and sector-specific TFP shocks. For sector-specific
TFP and shocks, I report the cross-sectional median of posterior means and, in parentheses, 10th and 90th percentiles
of posterior means.

shocks in other sectors. Since I study model dynamics under decision rules that are conditionally
linear in sectoral volatility (as I describe below in Section 5.1), the combined effect of volatility
shocks across several sectors can be easily simulated by simultaneously feeding volatility shocks
of different sectors into the decision rules.

I estimate the macro TFP level and volatility processes ((5) and (7)), sector-specific TFP level
and volatility processes ((6) and (8)) separately for each sector using a Bayesian Markov-Chain-
Monte-Carlo approach. I set flat priors (uniform distribution with loose bounds) for a, ai, τ1, τ2,
τ1,i, τ2,i, σz̄ , and σi. I use a Beta distribution with mean 0.6 and 0.2 for the priors for ρz̄ , ρzi , ρσz̄ ,
and ρσi . The priors for ηz̄ and ηzi are set to a Gamma distribution with mean 0.5 and standard
deviation 0.1. Because of the nonlinearity induced by stochastic volatility, the likelihood of each
posterior draw from a random-walkMetropolis-Hastings is evaluated using the particle filter as in
Fernández-Villaverde et al. (2011), Born and Pfeifer (2014), and Fernández-Villaverde et al. (2015).

2.2 Facts about Sector-specific Volatility Shocks

Based on the estimation results, I provide four key facts about sectoral volatility shocks that indicate
their importance for understanding macroeconomic dynamics. First, there is substantial evidence
of stochastic volatility at the industry level. Second, sectoral uncertainty is countercyclical at the
macro level: the number of sectors experiencing a volatility increase surges during recessions.
Third, despite the strong overall countercyclicality, historical time series of sectoral uncertainty
display substantial heterogeneity. For instance, industries such as “Federal Reserve banks, credit
intermediation, and related activities” and “Management of companies and enterprises” were hit
with the largest innovation to volatility during the Great Recession while industries such as “Air
transportation” and “Amusements, gambling, and recreation industries” experienced the biggest
jump in volatility during the COVID-19 recession. Fourth, sectoral uncertainty is stagflationary at
the local level: an increase in sectoral volatility reduces the sector’s own gross output and raises
the price level.

Table 1 provides the summary of posterior means. The key observation is that, compared to the
aggregate TFP, sector-specific TFP have higher average standard deviations that aremore persistent
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Figure 1: Number of sectors with a greater-than-1-standard-deviation innovation in volatility

Notes: The figure reports the number of sectors hit by a greater-than-one-standard-deviation positive innovation to
sector-specific TFP volatility εσi,t for each quarter. The shaded areas are the NBER recession dates.

and similar stochastic volatility.
The persistence parameter ρz of aggregate TFP is 0.51 and is substantially lower than the the

cross-sectional median of the persistence parameter ρzi of sector-specific TFP of 0.81. The mean
standard deviation σz of aggregate TFP is−6.56while the cross-sectional median of themean stan-
dard deviations σi of sector-specific TFP is −5.27. Thus, overall, the standard deviation of sector-
specific TFP is about (exp(−5.27)/ exp(−6.56) ≈) 3.6 times as large compared to the aggregate
TFP. Next, consider the stochastic volatility of aggregate and sector-specific TFP. A two-standard-
deviations aggregate TFP uncertainty shock, assuming that the aggregate TFP volatility is at the
steady state, raises the standard deviation of the innovation from (100 exp(−6.56) =) 0.14 percent-
age points to (100 exp(−6.56+ 2× 0.5) =) 0.38 percentage points. For sector-specific TFP, take, for
instance, the “motor vehicle and parts dealers” sector (posterior mean estimate: σi = −5.68 and
ηzi = 0.52). A two-standard-deviations sector-specific TFP uncertainty shock in that sector, as-
suming that the TFP volatility is at the steady state, raises the standard deviation of the innovation
from (100 exp(−5.68) =) 0.34 percentage points to (100 exp(−5.68 + 2 × 0.52) =) 0.97 percentage
points. Furthermore, since the autoregressive component of sector-specific TFP is quite persistent
at ρzi = 0.81 (cross-sectional median estimate), even if the volatility increase is transitory, changes
that occurred in sector-specific TFP would have lasting effects.

Next, I study the time-series properties of sectoral volatility shocks. To do so, first I mea-

9



Figure 2: Innovations to sectoral volatilities in 2009:Q1 and 2020:Q2

Notes: The figure reports the scatterplot of innovations εσi,t−1 to sector-specific TFP volatilities in 2009:Q1 against the
innovations in 2020:Q2. Each circle represents one of the 66 sectors. The labeled sectors stand for (from top to bottom):
“Air transportation”, “Amusements, gambling, and recreation industries”, “Performing arts, spectator sports,
museums, and related activities”, “Ambulatory health care services”, “Management of companies and enterprises”,
“Federal Reserve banks, credit intermediation, and related activities”.

sure variations in σi,t from the particle smoother, conditional on parameters set at their posterior
means. I then extract implied innovations εσi,t in TFP volatility by feeding in themedian smoothed
volatility into (8). Figure 1 reports the number of sectors experiencing a greater-than-1-standard-
deviation innovation in TFP volatility for each quarter. The number of sectors that experienced an
increase in TFP volatility rose sharply during both the Great Recession and the COVID-19 reces-
sion. For instance, in 2009:Q1 and in 2020:Q2, 22 and 30 (out of 66) sectors, respectively, experi-
enced a greater-than-1-standard-deviation innovation in TFP volatility. This is far greater than the
corresponding figure during expansions, which is (on average) 2 sectors per quarter.

Examiningwhich sectors are hitwith volatility shocks reveal the distinct nature of the two reces-
sions. To graphically illustrate this point, in Figure 2 I report the scatterplot of innovations εσi,t−1 to
sector-specific TFP volatilities in 2009:Q1 against the innovations in 2020:Q2. The correlation of the
innovations in the two periods are weakly positive at −0.10. In 2009:Q1, “Federal Reserve banks,
credit intermediation, and related activities” and “Management of companies and enterprises” are
the two industries that experienced the largest increase in volatility, while in 2020:Q2 greater-than-
3-standard-deviation innovation to volatility occured in “Air transportation” and “Amusements,
gambling, and recreation industries”. Other industries that experienced a big jump in volatilities

10



Figure 3: Local projection impulse responses
(a) A one-standard-deviation positive innovation to sector-specific TFP

(b) A one-standard-deviation positive innovation to sector-specific volatility

Notes: The top panel shows the responses of sectoral variables to a one-standard-deviation positive innovation to their
own TFP (a positive εzi,t). The bottom panel shows the responses of sectoral variables to a one-standard-deviation
positive innovation to their own TFP volatility (a positive εσi,t). The unit is in percents. The shaded areas are the 90%
confidence intervals. The standard errors are clustered by sectors.

include “Ambulatory health care services” and “Performing arts, spectator sports, museums, and
related activities”.

Finally, to examine the economic impact of sector-specific TFP and volatility shocks, I estimate
the following fixed-effect panel version of a local projection by Jordá (2005):

xi,t+h = αi + γt + β
(h)
1 εzi,t + β

(h)
2 εσi,t + νi,t+h, h = 0, . . . ,H

where xi,t is the variable of interestαi is the individual fixed effect for sector i, γt is the time fixed ef-
fect, and {β(h)

1 }Hh=0 and {β(h)
2 }Hh=0 are the coefficients of interest. εzi,t and εσi,t are the sector-specific

TFP and volatility shocks, respectively, extracted from the particle smoother. Intuitively, the idea
of this panel local projection is to exploit cross-sectional variations in the shock realizations (at any
given time, some sectors are hit harder by sector-specific volatility shocks than other sectors) to
infer the impact of sectoral volatility shocks. I compute the impulse responses for H = 3 quarter
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horizons and estimate the responses of sectoral gross output yi,t and sectoral real price level pi,t.
Figure 3 reports the estimated responses to a one-standard deviation sectoral TFP shock (a pos-
itive εzi,t) and a one-standard-deviation sectoral volatility shock (a positive εσi,t) in the top and
bottom panels, respectively. The top panel shows that, at the point estimate, following a positive
innovation to the sector-specific TFP, their own sectoral gross output increases by 1.2 percent and
the price level decreases by 1.4 percent on impact. The bottom panel shows that an increase in
sector-specific volatility has a stagflationary effect on the impacted sector. At the point estimate,
h = 2 quarters following a positive innovation to the sector-specific volatility, their own sectoral
gross output drops by 1.1 percent and the price level rises by 0.5 percent.

3 Model

Motivated by the empirical results in the previous section, I study a multi-sector New Keynesian
model, extending Bouakez et al. (2009) and Pasten et al. (2020) to allow for sector-specific TFP
volatility shocks. The model features nominal rigidities and input-output networks, both of which
are critical ingredients. First, previous research that use quantitative DSGEmodels to study aggre-
gate uncertainty shocks, such as Fernández-Villaverde et al. (2015) and Basu and Bundick (2017),
have found that nominal rigidities propagate andmagnify the impact of uncertainty shocks. Thus,
it is of interest to examine whether a similar transmission mechanism takes place in the case of
sector-specific volatility shocks as well. Second, it is important to consider input-output networks
because they could propagate the effects of sectoral volatility shocks across sectors through link-
ages.

3.1 Household

A representative household maximizes utility

maxE0

∞∑
t=0

βt

[
1

1− σ
C1−σ
t −

[ n∑
i=1

h
1+ν
ν

i,t

] ν
1+ν
]
,

where Ct is aggregate consumption, β is the discount factor, and σ is the coefficient of relative
risk aversion. To capture the notion of imperfect labor mobility across sectors in a parsimonious
manner, as in Bouakez et al. (2009), total hours worked are aggregated according to a CES function
of hours hi,t worked at each sector, where ν is the elasticity of substitution of labor across sectors.
Thei household’s budget constraint is

PtCt +
n∑

i=1

P q
i,txi,t +Bt =

n∑
i=1

Wi,thi,t +
n∑

i=1

Rk
i,tki,t−1 +Rt−1Bt−1 +Dt,

where Pt is the nominal price of aggregate consumption unit, P q
i,t is the nominal price of sector i

investment, xi,t is the investment in sector i capital, and Bt is the nominal bond holding. Wi,t is

12



the nominal wage rate in sector i, Rk
i,t is the nominal capital rental rate in sector i, ki,t is the capital

stock in sector i, Rt is the nominal interest rate, andDt is the nominal profits from all intermediate
firms.

Household aggregates consumption from each sector according to

Ct =

[
n∑

i=1

ω
1
εc
i c

εc−1
εc

i,t

] εc
εc−1

,

n∑
i=1

ωi = 1,

where εc controls the elasticity of substitution of consumption goods across sectors and leads to
the consumption demand function

ci,t = ωi

(
Pi,t

Pt

)−εc

Ct,

where Pi,t is the nominal price of sector i goods. The aggregate price level is given by

Pt =

[
n∑

i=1

ωiP
1−εc
i,t

] 1
1−εc

.

Capital accumulation in each sector i is subject to an investment adjustment cost:

ki,t = (1− δ)ki,t−1 +

{
1− κ

2

(
xi,t
xi,t−1

− 1

)2}
xi,t,

where δ is the depreciation rate and κ is a parameter that controls the size of the investment ad-
justment cost. Using input qij,t from sector j, investment in sector i is produced using a constant
returns to scale technology

xi,t =

[
n∑

i=1

b
1
εq

ij q

εq−1

εq

ij,t

] εq
εq−1

,

n∑
j=1

bij = 1,

where εq controls the elasticity of substitution across inputs. The nominal price of investment in
sector i is given by

P q
i,t =

[
n∑

i=1

bijP
1−εq
j,t

] 1
1−εq

.

A capital use matrix B describes the contribution of each sector’s output to other sectors’ capital
goods production:

B =


b11 b12 . . . b1n

b21
. . .

bn1 bnn

 .
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3.2 Production

In each sector i, final goods yi,t are produced by a perfectly competitive representative firm that
combines a continuum of intermediate goods, indexed by l ∈ [0, 1], with technology

yi,t =

[∫ 1

0
(yi,t(l))

θ−1
θ dl

] θ
θ−1

.

yi,t(l) denotes the time t input of intermediate good l and θ controls the price elasticity of demand
for each intermediate good. The demand function for good l is then

yi,t(l) =

(
Pi,t(l)

Pi,t

)−θ

yi,t, (9)

Pi,t is related to Pi,t(l) via the relationship

Pi,t =

[∫ 1

0
Pi,t(l)

1−θdl

] 1
1−θ

.

Intermediate goods for each sector i are produced by monopolistically competitive firms who
produce according to

yi,t(l) = ezi,t(ki,t(l))
αk
i (hi,t(l))

αh
i (m̃i,t(l))

1−αk
i −αh

i ,

where

m̃i,t(l) =

[
n∑

i=1

a
1

εm
ij (mij,t(l))

εm−1
εm

] εm
εm−1

,

wheremij,t is the amount of materials produced by sector j used as inputs by sector i. The produc-
tion function exhibits constant returns to scale as in (2). An input-output matrix A summarizes
the network structure of the economy:

A =


a11 a12 . . . a1n

a21
. . .

an1 ann

 .

The sectoral TFP consists of an economy-wide component and a sector-specific component as in (4).
In turn, economy-wide and sector-specific TFP follow AR(1) processes with stochastic volatility
described in equations (5)–(8).

The optimality conditions for input choice are given by

rki,t = mci,tα
k
i

yi,t(l)

ki,t(l)
, wi,t = mci,tα

h
i

yi,t(l)

hi,t(l)
, pmi,t = mci,t(1− αk

i − αh
i )

yi,t(l)

m̃i,t(l)
,
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where wi,t ≡ Wi,t/Pt, rki,t ≡ Rk
i,t/Pt, and pmi,t is defined in (3). mci,t is the real marginal cost for

sector i, given by

mci,t =
1

ezi,t

(
1

αk
i

)αk
i
(

1

αh
i

)αh
i
(

1

1− αk
i − αh

i

)1−αk
i −αh

i

(rki,t)
αk
i (wi,t)

αh
i (pmi,t)

1−αk
i −αh

i .

Intermediate firms face a Calvo pricing friction: in each period, 1 − ξi fraction of firms adjust
their prices while the remaining simply index their prices to the steady-state aggregate inflation
rate Π. Firms that are able to adjust choose a price so as to maximize a sum of present discounted
values of real profits:

max
Pi,t(l)

Et

∞∑
s=0

(βξi)
s

{
λt+s

λt

[
ΠsPi,t(l)

Pt+s
−mci,t+s

]
yi,t+s(l)

}
,

subject to the demand (9). The first-order condition for the optimal price Pi,t(l) = P ∗
i,t is given by

Et

∞∑
s=0

(βξi)
s

{
λt+s

λt

[
(1− θ)

(
ΠsP ∗

i,t

Pi,t+s

)(
Pi,t+s

Pt+s

)
+ θmci,t+s

](
1

P ∗
i,t

)(
ΠsP ∗

i,t

Pi,t+s

)−θ

yi,t+s

}
= 0.

Taking into account the demand for inputs from other industries, themarket-clearing condition
for sector i is given by

yi,t = ci,t +
n∑

j=1

mji,t +
n∑

j=1

qji,t.

The GDP of sector i, GDPi,t, is given by

GDPi,t = pi,tyi,t −
n∑

j=1

pj,tmij,t, (10)

where pi,t is the real price of goods i: pi,t ≡ Pi,t

Pt
.

3.3 Aggregation and Monetary Policy

I aggregate intermediate firms’ output by defining

ỹi,t ≡
∫ 1

0
yi,t(l)dl,

where ỹi,t is related to yi,t via the relationship

ỹi,t = ∆i,tyi,t,
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where∆i,t ≡
∫ 1
0

(
pi,t(l)
pi,t

)−θ
dl is a measure of price dispersion that follows the law of motion

∆i,t = (1− ξi)

(
p∗i,t
pi,t

)−θ

+ ξi

(
Π

πi,t

)−θ

.

The aggregate GDP of this economy is

Yt = Ct +Xt,

where Xt ≡
∑n

i=1

∑n
j=1 pj,tqij,t. The central bank follows a Taylor-type rule given by

Rt

R
=

(
Rt−1

R

)ρR
{(

Πt

Π

)ϕΠ
(
Yt
Y

)ϕY
}1−ρR

, (11)

where Πt ≡ Pt/Pt−1, ρR is the smoothing parameter, and ϕΠ and ϕY are the response coefficients
to inflation and output, respectively.

4 Analytical Insights

In this Section I analyze a simplified version of themodel presented above. The simplifiedmodel is
similar to the one analyzed in Pasten et al. (2024), but the main difference is that I consider sectoral
volatility shocks. I use the simplified model to achieve two objectives. First, I discuss the intuitions
for how sectoral TFP volatility shocks propagate through the input-output network. Second, I
illustrate how the risk-adjusted log-linearization method is used to capture the effects of sectoral
volatility shocks. I make the following simplifications to the model:
(i) The household has a log consumption utility (σ = 1) and sectoral labor supplies are perfect

substitutes (ν → ∞). These assumptions simplify the household labor supply and imply
that real wages are identical across sectors and track real consumption.

(ii) Capital does not enter into the production function (αk
i = 0,∀i). This assumption implies

that the consumption preference share, ωi, corresponds to the steady-state GDP share, and
that total consumption equals total GDP: Ct = Yt.

(iii) The Calvo pricing friction is replacedwith a following simple informational friction: all firms
adjust their prices every period but ξ̃i fraction of firms has to set their prices based on the t−1

information set.

(iv) Replace the Taylor rule (11) with a monetary policy targets steady-state nominal GDP:

PtYt = Y .

Since nominal consumptionwill be kept constant, this assumption, togetherwith assumption
(i), shuts down the bond Euler equation channel of consumption fluctuations.
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(v) Sectoral TFP is driven entirely by the sector-specific component (thus there is no economy-
wide TFP shock) and shocks are i.i.d. (ρzi = 0, ρσi = 0,∀i). I abstract from sectoral het-
erogeneity in the standard deviations of TFP volatility shocks by normalizing them to one
(ηzi = 1,∀i), which eliminates mechanical cross-sectoral differences in the effects of volatil-
ity shocks due to the size differences of the volatility innovations. I do retain the sectoral
heterogeneity in steady-state TFP volatility.

Consider the firms’ pricing problem. The optimal nominal price P f
i,t for 1− ξ̃i fraction of firms

in sector iwho adjust their prices based on current information set (“flexible” firms) is given by

P f
i,t =

(
θ

θ − 1

)
MCi,t,

whereMCi,t ≡ Ptmci,t is the nominalmarginal cost for sector i. The optimal priceP s
i,t for ξ̃i fraction

of firms in sector i who adjust their prices based on t − 1 information set (“sticky” firms) has to
satisfy the first-order condition

Et−1

[
P s
i,t

Pt
−
(

θ

θ − 1

)
MCi,t

Pt

]
= 0. (12)

To approximate the condition (12), I use a the risk-adjusted log-linearizationmethod as in Jermann
(1998), Uhlig (2010), Dew-Becker (2012), Malkhozov (2014), and others. The advantage of the
method is that the resulting decision rules become conditionally linear in volatility. More precisely,
the risk-adjusted log-linearization method utilizes the fact that log-linearized variables follow a
normal distribution. In turn, this implies that variables in levels follow a log-normal distribution.
Thus, the method risk-adjusts all the expectational variables as these variables are log-normal.
Denoting variables expressed in terms of log-deviations from their non-stochastic steady states as
hats, (12) becomes

P̂ s
i,t = Et−1[M̂Ci,t] + 0.5VARt−1[M̂Ci,t]− COVt−1[M̂Ci,t, P̂t], (13)

where the last two terms are the risk-adjustment terms. Holding other terms constant, an increase
in uncertainty about the marginal cost (VARt−1[M̂Ci,t]) raises the optimal price but higher co-
variance between the marginal cost and the aggregate price level (COVt−1[M̂Ci,t, P̂t]) lowers the
optimal price. Intuitively, when uncertainty increases, firms self-insure against the possibility of
pricing their goods too low relative to the marginal cost by raising their prices: the profit loss due
to pricing their goods too high and selling less is lower than that due to pricing too low and selling
more. Since firms’ objective is to maximize the expected real profit, they temper their upward
pricing biaswhen there is high co-movement between the nominalmarginal cost and the aggregate
price level. The nominal price of good i then evolves according to

P̂i,t = (1− ξ̃i)P̂
f
i,t + ξ̃iP̂

s
i,t,
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and the equilibrium nominal marginal cost can be expressed as (details in Appendix)

M̂Ci,t = −zi,t +

n∑
j=1

aijP̂j,t. (14)

Hence, the nominal marginal cost can be expressed as a linear combination of sectoral TFP and
nominal prices of intermediate inputs.

To compute the equilibrium law of motion, I proceed in two steps. In the first step, I solve for
the policy rules without the risk adjustment, that is, assuming P̂ s

i,t = Et−1[M̂Ci,t]. In the second
step, I perform the risk adjustment (13) by computing the variance and co-variance of M̂Ci,t and
P̂t based on the policy rules I obtained from the first step and solve for the equilibrium.

4.1 Economy without Input-Output Linkages

First, consider an economy without input-output linkages (aij = 0,∀i, j). In the Appendix, I show
that the sectoral nominal price levels P̂t ≡ [P̂1,t, . . . , P̂n,t]

′ and gross output ŷt ≡ [ŷ1,t, . . . , ŷn,t]
′ are

given by

P̂t = −(I − Ξ)zt + Ξ[I − 2[ιω′(I − Ξ)]′]Σσσt, (15)
ŷt = −ιω′P̂t, (16)

where I is an identitymatrix andΞ andΣσ are diagonalmatriceswith [ξ̃1, . . . , ξ̃n]′ and [e2σz1 , . . . , e2σzn ]′

as entries, respectively.4 ω ≡ [ω1, . . . , ωn]
′, and ι is an n × 1 vector of 1’s. zt and σt are vec-

tors of sector-specific TFP level and volatility shocks so that zt = [z1,t, . . . , zn,t]
′ and σt = [σz1,t −

σz1 , . . . , σzn,t − σzn ]
′. In turn, the aggregate nominal price level P̂t and output Ŷt are

P̂t = ω′P̂t, (17)
Ŷt = −ω′P̂t. (18)

To understand the solution, consider sector i nominal price using (15):

P̂i,t = −(1− ξ̃i)zi,t + ξ̃i[1− 2ωi(1− ξ̃i)]e
2σi(σi,t−1 − σi), (19)

which can be aggregated using (18) to obtain total GDP:

Ŷt =

n∑
i=1

ωi(1− ξ̃i)zi,t −
n∑

i=1

ωiξ̃i[1− 2ωi(1− ξ̃i)]e
2σi(σi,t−1 − σi). (20)

First, the sectoral price P̂i,t is responsive only to shocks within its own sector (zi,t and σi,t). This is
because, without input-output networks, sector imarginal cost (14) only depends on sector i TFP.

4Note that in an economy without linkages sectoral gross output equals sectoral GDP so that ŷt = ĜDP t where
ĜDP t ≡ [ĜDP 1,t, . . . , ĜDPn,t]

′.
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Second, an increase in TFP level zi,t lowers sectoral price P̂i,t and, through (17) and (18), lowers
aggregate price P̂t and raises GDP Ŷt. In contrast, as long as ωi < 1/[2(1− ξ̃i)],

5 an increase in TFP
volatility σi,t raises sectoral price P̂i,t and, through (17) and (18), raises aggregate price P̂t and
lowers GDP Ŷt. Third, shocks originating in sectors with higher steady-state GDP shares ωi have
a larger impact at the aggregate level. Fourth, as described in Pasten et al. (2024), price rigidity ξ̃i

dampens the response of GDP to sectoral TFP level shocks. In comparison, everything else equal,
sectors with higher price rigidity (higher ξ̃i) generate more aggregate volatility in GDP and price
in response to TFP volatility shocks. This is because, as described in (13), the sticky firms’ optimal
price is affected by the increase in risk, unlike the static pricing problem of flexible firms. Fifth,
sectors with higher steady-state TFP volatility (higher σi) generate more aggregate volatility in
GDP and price in response to TFP volatility shocks, all else being equal.

4.2 Economy with Input-Output Linkages: The Network Precautionary Pricing Mul-
tiplier

We now allow for input-output linkages. The sectoral nominal price levels are

P̂t = −L(I − Ξ)zt

+ LΞ
{[

I + ÃL (I − Ξ)
]
◦
[
I + ÃL (I − Ξ)

]
− 2

[
I + ÃL (I − Ξ)

]
◦
[
ιω′L (I − Ξ)

]}
Σσσt,

(21)

where ◦ denotes the element-wise product (Hadamard product) of two matrices and L ≡ [I −
(I − Ξ)Ã]−1, where Ã ≡ (ι − αh)A and αh ≡ [αh

1 , . . . , α
h
n]

′ , is the effective Leontief inverse matrix.
Since L =

∑∞
k=0[(I − Ξ)Ã]k, the (i, j)-th element of the effective Leontief inverse matrix measures

the sector j’s direct and indirect (i.e. intermediated through other sectors) importance as an in-
put supplier to sector i, weighted by the degree of nominal rigidities.6 As shown in Pasten et al.
(2024), the effective Leontief inverse matrix controls the propagation of sectoral TFP shocks zt in
an economy with nominal rigidites and input-output networks. The aggregate nominal price level
P̂t and GDP Ŷt are given by (17) and (18).

Denoting (i, j)-th element of the effective Leontief inverse matrix as lij , consider the expression
5Intuitively, this condition ensures that the steady-state GDP share of sector i is not “too large” so that the co-variance

of sector i nominal marginal cost and the aggregate price index is sufficiently small.
6When prices are fully flexible (i.e. ξ̃i = 0, ∀i), we have Ξ = 0 so the effective Leontief inverse matrix collapses to

the standard Leontief inverse matrix [I − Ã]−1 described in Acemoglu et al. (2012). For an anologous discussion of the
Leontief inverse matrix in an flexible price environment, see Carvalho and Tahbaz-Salehi (2019).
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for sector i nominal price using (21):

P̂i,t =−
n∑

j=1

lij(1− ξ̃j)zj,t

+

n∑
j=1

lij ξ̃j

[
n∑

h=1

ζjhe
2σzh (σzh,t−1 − σzh)

]
,

(22)

where

ζjh ≡



1 + (1− αh
j )

n∑
k=1

ajklkj(1− ξ̃j)︸ ︷︷ ︸
Network multiplier


2

︸ ︷︷ ︸
Effect through VARt−1(M̂Cj,t)

− 2

1 + (1− αh
j )

n∑
k=1

ajklkj(1− ξ̃j)︸ ︷︷ ︸
Network multiplier

λj

︸ ︷︷ ︸
Effect through COVt−1(M̂Cj,t, P̂t)

, if j = h

(1− αh
j )

n∑
k=1

ajklkh(1− ξ̃h)︸ ︷︷ ︸
Network multiplier


2

︸ ︷︷ ︸
Effect through VARt−1(M̂Cj,t)

− 2

(1− αh
j )

n∑
k=1

ajklkh(1− ξ̃h)︸ ︷︷ ︸
Network multiplier

λh

︸ ︷︷ ︸
Effect through COVt−1(M̂Cj,t, P̂t)

, otherwise

(23)
and

λi ≡ (1− ξ̃i)

n∑
j=1

ωjlji. (24)

The first line of the right-hand-side of (22) contains the elasticity, given by lij(1 − ξ̃j), of sector i
price Pi,t to sectoral TFP shocks zj,t. The elasticity is captured by lij — the shocked sector’s direct
and indirect importance as an input supplier to sector i, convoluted with price rigidities — and the
shocked sector’s degree of price flexibility (1− ξ̃j).

The second line of (22) contains the elasticity, given by ∑n
j=1 lij ξ̃jζjhe

2σzh , of Pi,t to sectoral
TFP volatility shocks originating in industry h, σzh,t−1. First, as in the case of an economy without
input-output linkages, the elasticity is proportional to the steady-state TFP volatility of sector h,
e2σzh . Second, the elasticity is affected by ζjh, which is the responsiveness of optimal price P̂ s

j,t for
sticky firms in sector j to a TFP volatility shock in sector h, and the share of sticky firms ξ̃j . Third,
lij captures how a sector j sticky firms’ pricing, through input-output linkages, affects Pi,t. The
elasticity of Pi,t to σzh,t−1 is then obtained by summing lij ξ̃jζjhe

2σzh across all sectors j = 1, . . . , n.

Asdescribed in (23), the responsiveness of the optimal sticky price to a TFP volatility shock, ζjh,
can be decomposed into two components: the effect through VARt−1(M̂Cj,t), which is positively
related to the elasticity, and the effect through COVt−1(M̂Cj,t, P̂t), which is negatively related. To
understand the implication of input-output linkages, consider the effect through VARt−1(M̂Cj,t)
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in the case of j = h. An increase in sector j TFP volatility raises VARt−1(M̂Cj,t) through two
channels. The first is the direct channel, which is equal to 1. As we can see from (14), a one-
unit increase of the volatility of zj,t directly raises that of M̂Cj,t by one unit. The second channel
is the network precautionary pricing multiplier, which comes from the fact that sector j’s marginal
cost depends on sectoral prices of other sectors in (14). Intuitively, the network channel captures
sector j’s direct and indirect influence as an input supplier to its own and other sectors, say sector
k, summarized by lkj . In turn, sector j uses those goods k as intermediate inputs so it must be
weighted by ajk. The network precautionary pricing multiplier amplifies sectoral TFP volatility
shocks, provided that the magnification effect on VARt−1(M̂Cj,t) is not dominated by the impact
on COVt−1(M̂Cj,t, P̂t). Next, consider ζjh in the case of j ̸= h. The structure of the elasticity is
similar to that on its own volatility shock (j = h), except that there is no direct channel in the
variance effect and everything operates through the network channel. Finally, note that if there is
no input-output linkages, L = I and A = 0 so (22) reduces to (19).

We can use (18) on (22) to obtain total GDP:

Ŷt =
n∑

i=1

λizi,t −
n∑

i=1

µie
2σi(σi,t − σi), (25)

where

µi ≡
n∑

j=1

n∑
h=1

ωjljhξ̃hζhi. (26)

The elasticities λi and µi are related to the elasticities in (22), interacted with the preference shares
ωi. Finally, note again that if there is no input-output linkages, (25) reduces to (20).

To summarize, the analytical model shows that the transmission mechanism of sector-specific
TFP volatility shocks is qualitatively distinct from that of first-moment sector-specific TFP shocks.
An increase in sector-specific TFP volatility is stagflationary and its aggregate impact depend on
the convolution of several sectoral characteristics, such as the degree of price rigidity, the steady-
state TFP volatility, and the impacted sector’s position in the production network. The nominal
pricing bias and input-output linkages give rise to the network precautionary pricing multiplier:
production networks amplify and propagate firms’ motive to preemptively raise prices in response
to heightened uncertainty.

5 Solution and Parameterization

I now return to the quantitativemodel to explain in detail the risk-adjusted log-linearizationmethod
to solve the model and the parameterization to match U.S. sectoral facts.
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5.1 Risk-adjusted Log-linearization

This is a large model; in the quantitative analysis below I calibrate the model to 66 sectors and
hence it is important to use the solution method that allows me to capture the effect of volatility
shocks while preserving computational tractability. As I described above, I use the risk-adjusted
log-linearization method for this purpose. In this respect, my paper is closely related to Bianchi
et al. (2023), who study the effects of macro uncertainty shocks in a single-sector New Keyne-
sian model using the risk-adjustment technique. The main difference is that I study a multi-sector
New Keynesian model, which allows me to consider the impact of sector-specific volatility shocks,
propagated through input-output linkages.

Expectational equations and endogenous riskwedges. As a first step, I list the expectational equa-
tions in themodel and their risk-adjusted log-linear equations. This is useful, because as in Bianchi
et al. (2023), I can decompose the transmission channels of volatility shocks into endogenous risk
wedges, which consists of second moments of endogenous variables. The quantitative model has
four distinct risk wedges. First, consider the consumption Euler equation by the representative
household:

λt = βEt

[
λt+1

Rt

πt+1

]
.

In the risk-adjusted log-linearization form,

λ̂t = R̂t + Etλ̂t+1 − EtΠ̂t+1 +
1

2
VARt(λ̂t+1) +

1

2
VARt(π̂t+1)− COVt(λ̂t+1, Π̂t+1)︸ ︷︷ ︸

Precautionary savings

, (27)

where the risk-adjustment term captures the precautionary savings channel as in Basu andBundick
(2017).

Next, consider the capital Euler equation for each sector i:

µi,t = βEt

[
λt+1mci,t+1α

k
i

yi,t+1

ki,t
+ µi,t+1(1− δ)

]
,

where µi,t is the Lagrangian multiplier for the sector i capital accumulation equation. In the risk-
adjusted log-linearized form, the equations are given by

µ̂i,t = {1− β(1− δ)}
[
Etλ̂t+1 + Etm̂ci,t+1 + Etŷi,t+1 − k̂i,t

]
+ β(1− δ)Etµi,t+1

+ {1− β(1− δ)}
[
1

2
VARt(λ̂t+1 + m̂ci,t+1) +

1

2
VARt(ŷi,t+1) + COVt(λ̂t+1 + m̂ci,t+1, ŷi,t+1)

]
+

1

2
β(1− δ)VARt(µ̂i,t+1)︸ ︷︷ ︸

Capital return risk

,

(28)

where the risk-adjustment term captures the fact that the future return on capital is uncertain.
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Next, consider the optimality condition for investment in each sector i:

λtp
q
i,t = µi,t

{
1− κ

2

(
xi,t
xi,t−1

− 1

)2

− κ

(
xi,t
xi,t−1

− 1

)
xi,t
xi,t−1

}

+ βκEt

{
µi,t+1

(
xi,t+1

xi,t
− 1

)(
xi,t+1

xi,t

)2
}
,

which can be log-linearized as

λ̂t + p̂qi,t = µ̂i,t − κ∆x̂i,t + βκEt∆x̂i,t+1 + βκ

{
5

2
VARt(∆x̂i,t+1) + COVt(µ̂i,t+1,∆x̂i,t+1)

}
︸ ︷︷ ︸

Investment adjustment cost

, (29)

where the risk-adjustment term captures the fact that the impact of current investment on a future
adjustment cost is uncertain.

Finally, consider sticky prices. The optimal reset price p∗i,t for retailers in sector i is given by

p∗i,t =

(
θ

θ − 1

)
Pn
i,t

P d
i,t

,

where we define

Pn
i,t ≡ λtmci,tyi,t + ξiβEt

[(πi,t+1

Π

)θ
Pn
i,t+1

]
,

P d
i,t ≡ λtyi,t + ξiβEt

[(πi,t+1

Π

)θ−1
(
πi,t+1

Πt+1

)
P d
i,t+1

]
.

Pn
i,t and P d

i,t can be risk-adjusted as

P̂n
i,t = (1− ξiβ)

[
λ̂t + m̂ci,t + ŷi,t

]
+ ξiβ

[
θEtπ̂i,t+1 + EtP̂

n
i,t+1

]
+ ξiβ

{
θ2

2
VARt(π̂i,t+1) +

1

2
VARt(P̂

n
i,t+1) + θCOVt(π̂i,t+1, P̂

n
i,t+1)︸ ︷︷ ︸

Nominal pricing bias

}
, (30)

and

P̂ d
i,t = (1− ξiβ)

[
λ̂t + ŷi,t

]
+ ξiβ

[
θEtπ̂i,t+1 − EtΠ̂t+1 + EtP̂

d
i,t+1

]
+ ξiβ

{
θ2

2
VARt(π̂i,t+1) +

1

2
VARt(P̂

d
i,t+1 − Π̂t+1) + θCOVt(π̂i,t+1, P̂

d
i,t+1 − Π̂t+1)︸ ︷︷ ︸

Nominal pricing bias

}
. (31)

The risk-adjustment term, or the nominal pricing bias, is related to the precautionary price setting
motive in Fernández-Villaverde et al. (2015). It is also related to the optimal price for the sticky
firms (13) in the analyticalmodel above. The nominal pricing bias captures the fact thatwhen firms
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choose their current prices, their effects on future profits is uncertain because the future condition
is uncertain.

Conditionally linear decision rules. The model, in its risk-adjusted log-linearized form, can be
written as a following linear rational-expectations (RE) system (Sims (2002)):

Γ0ŷt = Γ1ŷt−1 +ΨΣt−1εt +Ωζt + C(Σt−1), (32)

where ŷt is a vector of endogenous variablesyt in terms of its log deviations from the non-stochastic
steady states, εt is a vector of first-moment shocks (the economy-wide TFP shock and sector-
specific TFP shocks), and ζt is a vector of expectation errors. Γ0, Γ1,Ψ, and Ω are coefficient matri-
ces, Σt−1 is a matrix that collects the standard deviations of first-moment shocks, and C(Σt−1) is a
vector that collects the risk-adjustment terms for relevant equations, which is a function of Σt−1 to
reflect the fact that the risk wedges depend on the stochastic volatility. In turn, the log-deviation
of Σt from the nonstochastic steady state evolves according to

Σ̂t = P Σ̂t−1 +Qet,

where P and Q are coefficient matrices and et is a vector that collects innovations to volatility.
My goal is to derive a decision rule that is conditionally linear in volatility:

ŷt = J + JΣ̂t−1 +Rŷt−1 + SΣt−1εt, (33)

where J is vector of constant terms that reflects the risk-adjustments C(Σt−1) in (32) evaluated
at the steady-state volatility Σ, and J captures how the additional terms due to risk adjustments
C(Σt−1) respond to changes in volatility. R and S are coefficient matrices. The decision rule (33)
makes clear that volatility shocks affect the endogenous variables through two channels. First,
mechanically through the term SΣtεt, the shock realization becomes more dispersed. Second, as
can be seen in the term JΣ̂t−1, changes in volatility affect endogenous variables because they alter
risk adjustments. This second channel is my main focus.

To solve for (33), I proceed in two steps. First, I leverage the fact that the coefficient matri-
ces R and S are invariant to risk adjustments and compute R and S using a standard solution
algorithm (e.g. Sims (2002)) from the RE system (32) without taking into account the risk ad-
justments C(Σt−1). I then use the coefficients S to characterize variances and co-variances in the
risk-adjustment terms to obtain J and J .7

7To see how this works, consider VARt(ŷt+1). Evaluated at the nonstochastic steady state, this vector of one-step-
ahead variances is given by (VARt(ŷt+1))ss = SΣΣ′S′. Similarly, the log deviation ofVARt(ŷt+1) from its nonstochastic
steady state is given by ̂VARt(ŷt+1) = 2SΣΣ̂tΣ

′S′. These relationships allowme to characterize how the risk-adjustment
terms evolve in response to volatility shocks.
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5.2 Parameterization

I set the discount factor β to 0.998, depreciation rate δ to 0.025, and the risk-aversion parameter
σ to 1. Following Horvath (2000), I choose ν = 1 for the elasticity of substitution of labor across
sectors. Following the analysis of long-run sectoral price changes and consumption expenditure
shares by Herrendorf et al. (2013), I set εc = 1 for the elasticity of substitution of consumption
expenditure across sectors. I set εm = 0.1 following the estimation result by Atalay (2017). By
symmetry, I also set the elasticity of substitution of intermediate inputs for investment to εq = 0.1.
The investment adjustment cost is set to κ = 0.5. Following Fernández-Villaverde et al. (2015), I
choose θ = 21, which gives a steady-state markup of 5%. To calibrate sectoral price stickiness ξi,
I use the data constructed by Pasten et al. (2020). They compute the industry-level frequency of
price adjustments from the BLS confidential microdata underlying the producer price data (PPI).
For the Taylor rule I set ρR = 0.5, ϕΠ = 2, and ϕY = 0.05.

As explained in Section 2, I estimate the values of factor shares {αk
i }ni=1, {αh

i }ni=1, the input-
output matrix A and the preference weights {ωi}ni=1 from the “use tables” of the input-output
accounts constructed by the BEA. I use the 1997 capital flows table provided by the BEA to esti-
mate the parameters (bij ’s) for the capital goods production. The capital flow table describes the
distribution of new structures, equipment and softwares produced by individual sectors to using
industries. Hence, to obtain the investment ratio bij , I use the table to calculate the share of the
value of commodities purchased by sector i from sector j in total investment made by sector i. For
the TFP level and volatility processes, I use the estimates from the particle filter in Section 2.

6 Results

I first analyze the impulse response functions (IRFs) ofmacro variables to an aggregate TFP volatil-
ity shock and to sector-specific TFP volatility shocks. To capture the cross-sectoral comovement of
sector-specific TFP volatility innovations reported in Figure 1 and to give sector-specific volatility
shocks a fair comparison relative to the aggregate volatility shock, I consider a single factor-factor
model on sectoral volatility innovations εσi,t:

εσi,t = ζiFt + σvivi,t, vi,t ∼ N(0, 1), i = 1, . . . , n, (34)

where ζi is the factor loading, Ft is the common factor, and vi,t is the idiosyncratic shock. In turn,
Ft follows

Ft = ρFFt−1 + σF εF,t, εF,t ∼ N(0, 1).

I estimate ρF = 0.44 and the R2 for (34) is 0.20. As I show in the Appendix, the estimated factor
Ft shows two spikes, one during the Great Recession and another one during the COVID-19 reces-
sion, consistent with the patterns observed in Figure 1. Figure 4 reports the IRF to a two-standard-
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Figure 4: Impulse responses to sector-specific and aggregate volatility shocks

Notes: The figure reports the IRFs to a two-standard-deviations shock to the single factor for sector-specific TFP
volatility innovations (labeled “Sector-specific volatility shock”) and to a two-standard-deviations shock to the
aggregate TFP volatility. The unit is in percents. Inflation and the nominal interest rate are annualized.

deviation shock (a positive εF,t) to the common factor in sector-specific volatility.8 Output, con-
sumption, investment, and hours worked all drop after an increase in sectoral TFP volatility, while
inflation and the nominal interest rate rise. The drop in economic activity is similar in magni-
tude to that in response to a policy uncertainty shock simulated on a structural model (Mumtaz
and Zanetti (2013), Born and Pfeifer (2014), Fernández-Villaverde et al. (2015)). For comparison I
also plot the IRF of a two-standard-deviation shock to the aggregate TFP volatility. While the IRF
is qualitatively similar to that of the sector-specific TFP volatility shock, the magnitude is much
smaller. Indeed the impact and cumulative IRFs for output are −0.01 and −0.04, respectively, for
the aggregate TFP volatility, while they are −0.02 and −0.20, respectively, for the sector-specific
TFP volatility.

What is the mechanism driving the drop in economic activity and the rise in nominal variables
to sector-specific volatility shocks? To understand this, in Figure 5 I compute counterfactual IRFs
where I activate only one of the endogenous risk wedges identified in Section 5.1: precautionary
savings (27), capital return risk (28), investment adjustment cost (29), and nominal pricing bias
((30) and (31)). Figure 5 shows thatwhen only the nominal pricing bias is activated, the IRF is very
similar to that of the basline IRF where all four risk wedges are activated. In contrast, when only

8As is common in the uncertainty shock literature (e.g. Fernández-Villaverde et al. (2015)), I consider two-standard-
deviation shocks to volatility.

26



Figure 5: Impulse responses to sector-specific volatility shocks: Endogenous risk wedges

Notes: The figure reports the IRFs to a two-standard-deviations shock to the single factor for sector-specific TFP
volatility innovations. Each line represents an IRF where all four endogenous risk wedges are activated (“Baseline”),
only the precautionary savings wedge is activated (“Prec. savings only”), only the capital return risk wedge is
activated (“Capital return risk only”), only the investment adjustment cost wedge is activated (“Inv. adj. cost only”),
and only the nominal pricing bias wedge is activated (“Nominal pricing bias only”). The unit is in percents. Inflation
and the nominal interest rate are annualized.

one of the other three risk wedges are activated, the IRFs show little movement. Thus, consistent
with the theoretical analysis in Section 4, the nominal pricing bias channel is the dominant driver
of the aggregate IRF to sector-specific volatility shocks.

Themacroeconomic impact of sector-specific TFPvolatility shocks depends on the input-output
linkages and the distribution of sectoral characterictics such as price stickiness and preference
shares along these linkages (see for instance (25) and (26)). To quantify the importance of these
elements, in Figure 6 I report the IRFs to sector-specific volatility shocks when I perturb some fea-
tures of the model. First, consider the case where I turn off the input-output network by setting∑

j=1 aij = 0 for all sector i while setting B = I . In this case, the IRF becomes negligible, un-
derscoring the importance of the network precautionary pricing multiplier.9 Next, consider the
scenario where sectoral price stickiness is assumed to be homogeneous across all sectors, set equal
to the average price stickiness calculated across all sectors. Interestingly, the homegenous price
stickiness case generates a larger aggregate response relative to the baseline scenario; indeed, the
cumative IRFs to aggregate GDP is−0.35 so they are about twice as large compared to the baseline
IRF. Third, in the case where the preference shares are assumed to be homogeneous across sectors,

9A similar result holds when ∑
j=1 aij = 0 is imposed for all sectors i, but B is retained at its original calibration.

27



Figure 6: Counterfactual impulse responses to sector-specific volatility shocks

Notes: The figure reports the IRFs to a two-standard-deviations shock to the single factor for sector-specific TFP
volatility innovations. Each line represents an IRF of the baseline model (“Baseline”), the model without input-output
lnkages (“No I-O linkages”), the model with homogenenous price stickiness (“Homog. price stickiness”), and the
model with homogeneous consumption preference share (“Homog. cons. share”). The unit is in percents. Inflation
and the nominal interest rate are annualized.

the IRF is similar to the baseline case.
Finally, I examine the role of sector identity in shaping the effects of volatility shocks and how

this identity effect is influenced by the model’s features. Specifically, I consider a two-standard-
deviations sector-specific volatility shock for each sector and calculate the cumulative aggregate
output response. I then rank the sectors based on their responsiveness, from the most to the least
responsive. In other words, volatility shocks have a larger macroeconomic impact when they occur
in the more responsive sectors. In Figure 7, I visualize how the sectoral rankings change as I vary
the model specification. First, shutting down the input-output linkages alters the sectoral ranking
dramatically. For instance, the top five most responsive sectors in the baseline case is “Securi-
ties, commodity contracts, and investments”, “Oil and gas extraction”, “Computer and electronic
products”, “Housing”, “Other real estate”. When the linkages are turned off, the top five most
responsive sectors become “Securities, commodity contracts, and investments”, “Insurance carri-
ers and related activities”, “Apparel and leather and allied products”, “Motor vehicle and parts
dealers”, “Ambulatory health care services”, so only one out of five sectors remains in the top five
(“Securities, commodity contracts, and investments”). In contrast, imposing homogeneous price
stickiness or preference shares has smaller effects on the sectoral rankings. Indeed, both of these
specifications result in four out of top five sectors in the baseline case remaining in the top five.
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Figure 7: Ranking of sectors

Notes: The figure shows how the ranking of sectors, sorted based on the cumulative aggregate output responses to
sector-specific TFP volatility shocks, change as I vary the model specification. The left panel compares the baseline
model and the model without input-output linkages, the middle panels compares the baseline model and the model
with homogeneous price stickiness, and the right panel compareshe baseline model and the model with homogeneous
consumption preference share.

7 Conclusion

Recent macroeconomic experience indicate that a rise in uncertainty can exhibit substantial hetero-
geneity across sectors, with some experiencing significantly larger increases than others. Despite
this observation, the role of time-varying sectoral uncertainty in driving aggregate fluctuations has
been largely overlooked to date. Using both empirical analysis and a multi-sector New Keynesian
model, I show that sector-specific volatility shocks can considerably affect aggregate outcomes. The
interaction of nominal rigidities and input-output linkages give rise to the network precautionary
pricing multiplier that amplifies and propagates the sectoral uncertainty shocks across the econ-
omy. These findings highlight the need for policymakers to consider sector-specific uncertainty
shocks when designing stabilization policies.
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Appendices

A Additional Tables and Figures

Table A.1: List of sectors

1. Farms 34. Water transportation
2. Forestry, fishing, and related activities 35. Truck transportation
3. Oil and gas extraction 36. Transit and ground passenger transportation
4. Mining, except oil and gas 37. Pipeline transportation
5. Support activities for mining 38. Other transportation and support activities
6. Utilities 39. Warehousing and storage
7. Construction 40. Publishing industries, except internet (includes software)
8. Wood products 41. Motion picture and sound recording industries
9. Nonmetallic mineral products 42. Broadcasting and telecommunications
10. Primary metals 43. Data processing, internet publishing, and other information services
11. Fabricated metal products 44. Federal Reserve banks, credit intermediation, and related activities
12. Machinery 45. Securities, commodity contracts, and investments
13. Computer and electronic products 46. Insurance carriers and related activities
14. Electrical equipment, appliances, and components 47. Funds, trusts, and other financial vehicles
15. Motor vehicles, bodies and trailers, and parts 48. Housing
16. Other transportation equipment 49. Other real estate
17. Furniture and related products 50. Rental and leasing services and lessors of intangible assets
18. Miscellaneous manufacturing 51. Legal services
19. Food and beverage and tobacco products 52. Computer systems design and related services
20. Textile mills and textile product mills 53. Miscellaneous professional, scientific, and technical services
21. Apparel and leather and allied products 54. Management of companies and enterprises
22. Paper products 55. Administrative and support services
23. Printing and related support activities 56. Waste management and remediation services
24. Petroleum and coal products 57. Educational services
25. Chemical products 58. Ambulatory health care services
26. Plastics and rubber products 59. Hospitals
27. Wholesale trade 60. Nursing and residential care facilities
28. Motor vehicle and parts dealers 61. Social assistance
29. Food and beverage stores 62. Performing arts, spectator sports, museums, and related activities
30. General merchandise stores 63. Amusements, gambling, and recreation industries
31. Other retail 64. Accommodation
32. Air transportation 65. Food services and drinking places
33. Rail transportation 66. Other services, except government
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Figure A.1: Time series of the common factor Ft

Notes: The figure reports the time series of the common factor Ft of sector-specific TFP volatility innovations, given by
(34) in the main text. The shaded areas are the NBER recession dates.
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B Details on the Simplified Model

B.1 Equilibrium Conditions

1. Marginal utility of consumption:
λt = C−1

t (B.1)

2. Labor supply condition:
λtwi,t = 1, i = 1, . . . , n (B.2)

3. Bond Euler equation:
λt = βEt

[
λt+1

Rt

Πt+1

]
(B.3)

4. Consumption demand:
ci,t = ωi (pi,t)

−εc Ct, i = 1, . . . , n (B.4)

5. Sectoral price index:

1 =

[
n∑

i=1

ωip
1−εc
i,t

] 1
1−εc

(B.5)

6. Real marginal cost:

mci,t =
1

ezi,t

(
1

αh
i

)αh
i
(

1

1− αh
i

)1−αh
i

(wi,t)
αh
i (pmi,t)

1−αh
i , i = 1, . . . , n (B.6)

7. Labor demand:
wi,t = mci,tα

h
i

yi,t(l)

hi,t(l)
, i = 1, . . . , n (B.7)

8. Intermediate inputs demand (1):

pmi,t = mci,t(1− αh
i )

yi,t(l)

m̃i,t(l)
, i, j = 1, . . . , n (B.8)

9. Intermediate inputs demand (2):

pmi,t =

 n∑
j=1

aijp
1−εm
j,t

 1
1−εm

, i = 1, . . . , n (B.9)

10. Intermediate inputs demand (3):

mij,t = aij

(
pj,t
pmi,t

)−εm

m̃i,t, i, j = 1, . . . , n (B.10)

34



11. Sectoral output and input:
ỹi,t = ∆i,tyi,t, i = 1, . . . , n, (B.11)

where ỹi,t =
∫ 1
0 yi,t(l)dl and∆i,t ≡

∫ 1
0

(
Pi,t(l)
Pi,t

)−θ
dl.

12. Law of motion for price dispersion:

∆i,t = (1− ξ̃i)

(
P f
i,t

Pi,t

)−θ

+ ξ̃i

(
P s
i,t

Pi,t

)−θ

, i = 1, . . . , n (B.12)

13. Sectoral resource constraint:

yi,t = ci,t +

n∑
j=1

mji,t, i = 1, . . . , n (B.13)

14. Sectoral GDP:
GDPi,t = pi,tyi,t − pmi,tm̃i,t, i = 1, . . . , n (B.14)

15. Nominal marginal cost:
MCi,t = Ptmci,t, i = 1, . . . , n (B.15)

16. Flexible firms pricing:
P f
i,t =

(
θ

θ − 1

)
MCi,t, i = 1, . . . , n (B.16)

17. Sticky firms pricing:

Et−1

[
P s
i,t

Pt
−
(

θ

θ − 1

)
MCi,t

Pt

]
= 0, i = 1, . . . , n (B.17)

18. Nominal sectoral price:

Pi,t =
[
(1− ξ̃i)(P

f
i,t)

1−θ + ξ̃i(P
s
i,t)

1−θ
] 1

1−θ
, i = 1, . . . , n (B.18)

19. Real sectoral price:
pi,t =

Pi,t

Pt
, i = 1, . . . , n (B.19)

20. Sectoral inflation:
πi,t =

Pi,t

Pi,t−1
, i = 1, . . . , n (B.20)

21. Aggregate inflation:
Πt =

Pt

Pt−1
(B.21)
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22. Aggregate resource constraint:
Ct = Yt (B.22)

23. Monetary policy:
PtYt = Y (B.23)

B.2 Risk-adjusted Log-linearized Equilibrium Conditions

1. Marginal utility of consumption:
λ̂t = −Ĉt (B.24)

2. Labor supply condition:
λ̂t + ŵi,t = 0, i = 1, . . . , n (B.25)

3. Bond Euler equation:

λ̂t = R̂t + Etλ̂t+1 − EtΠ̂t+1 +
1

2
VARt(λ̂t+1) +

1

2
VARt(Π̂t+1)− COVt(λ̂t+1, Π̂t+1) (B.26)

4. Consumption demand:
εcp̂i,t + ĉi,t = Ĉt, i = 1, . . . , n (B.27)

5. Sectoral price index:
0 =

n∑
i=1

ωip̂i,t (B.28)

6. Real marginal cost:

m̂ci,t = −zi,t + αh
i ŵi,t + (1− αh

i )p̂
m
i,t, i = 1, . . . , n (B.29)

7. Labor demand:
ŵi,t = m̂ci,t + ŷi,t(l)− ĥi,t(l), i = 1, . . . , n (B.30)

8. Intermediate inputs demand (1):

p̂mi,t = m̂ci,t + ŷi,t(l)− ̂̃mi,t(l), i, j = 1, . . . , n (B.31)

9. Intermediate inputs demand (2):

p̂mi,t =

n∑
j=1

aij p̂j,t, i = 1, . . . , n (B.32)
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10. Intermediate inputs demand (3):

m̂ij,t = −εm
(
pj,t − pmi,t

)
+ ̂̃mi,t, i, j = 1, . . . , n (B.33)

11. Sectoral output and input: ̂̃yi,t = ∆̂i,t + ŷi,t, i = 1, . . . , n (B.34)

12. Law of motion for price dispersion:

∆̂i,t = −θ(1− ξ̃i)
(
P̂ f
i,t − P̂i,t

)
− θξ̃i

(
P̂ s
i,t − P̂i,t

)
, i = 1, . . . , n (B.35)

13. Sectoral resource constraint:

ŷi,t =
ci
yi
ĉi,t +

n∑
j=1

mji

yi
m̂ji,t, i = 1, . . . , n (B.36)

14. Sectoral GDP:

ĜDP i,t =
piyi
GDPi

(p̂i,t + ŷi,t)−
pmi m̃i

GDPi

(
p̂mi,t +

̂̃mi,t

)
, i = 1, . . . , n (B.37)

15. Nominal marginal cost:
M̂Ci,t = P̂t + m̂ci,t, i = 1, . . . , n (B.38)

16. Flexible firms pricing:
P̂ f
i,t = M̂Ci,t, i = 1, . . . , n (B.39)

17. Sticky firms pricing:

P̂ s
i,t = Et−1[M̂Ci,t] +

1

2
VARt−1[M̂Ci,t]− COVt−1[M̂Ci,t, P̂t], i = 1, . . . , n (B.40)

18. Nominal sectoral price:

P̂i,t = (1− ξ̃i)P̂
f
i,t + ξ̃iP̂

s
i,t, i = 1, . . . , n (B.41)

19. Real sectoral price:
p̂i,t = P̂i,t − P̂t, i = 1, . . . , n (B.42)

20. Sectoral inflation:
π̂i,t = P̂i,t − P̂i,t−1, i = 1, . . . , n (B.43)

21. Aggregate inflation:
Π̂t = P̂t − P̂t−1 (B.44)
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22. Aggregate resource constraint:
Ĉt = Ŷt (B.45)

23. Monetary policy:
P̂t + Ŷt = 0 (B.46)

B.3 Equilibrium Law of Motion

Using (B.24), (B.44), (B.45), and (B.46) and substituting into (B.26), the Euler equation becomes
R̂t = 0, which gives the equilibrium nominal interest rate that supports (B.46).

From (B.24), (B.25), (B.45), and (B.46), substitute ŵi,t = Ĉt = −P̂t into (B.29) and (B.32):

m̂ci,t = −zi,t − αh
i P̂t + (1− αh

i )
n∑

j=1

aij p̂j,t,

which using (B.38) and (B.42), becomes

M̂Ci,t = −zi,t + (1− αh
i )

n∑
j=1

aijP̂j,t. (B.47)

Denote M̂Ct ≡
[
M̂C1,t, . . . , M̂Cn,t

]′
then (B.47) is written as

M̂Ct = −zt + ÃP̂t, (B.48)

where zt ≡ [z1,t, . . . , zn,t]
′, P̂t ≡ [P̂1,t, . . . , P̂n,t]

′, and Ã ≡ (ι− αh)A,where αh ≡ [αh
1 , . . . , α

h
n]

′ and ι

is a n× 1 vector of 1’s.
As a first step, I solve for the policy rules without risk adjustment. Using Et−1

[
M̂Ct

]
= 0,

P̂t = ΞEt−1

[
M̂Ct

]
+ (I − Ξ)M̂Ct

= (I − Ξ)
[
−zt + ÃP̂t

]
,

(B.49)

so we have
P̂t = −L (I − Ξ) zt. (B.50)

where L ≡
[
I − (I − Ξ) Ã

]−1
. Substitute (B.50) into (B.48) to obtain

M̂Ct = −
[
I + (ι− αh)AL (I − Ξ)

]
zt. (B.51)
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Next, consider policy rules with risk adjustment. Note we have

̂
VARt−1

[
M̂Ct

]
= 2

[
I + ÃL (I − Ξ)

]
◦
[
I + ÃL (I − Ξ)

]
Σσσt, (B.52)

̂
COVt−1

[
M̂Ct, P̂t

]
= 2

[
I + ÃL (I − Ξ)

]
◦
[
ιω′L (I − Ξ)

]
Σσσt, (B.53)

where ◦ denotes the element-wise product (Hadamard product) of two matrices and we denote

̂
VARt−1

[
M̂Ct

]
≡
[

̂
VARt−1

[
M̂C1,t

]
, . . . ,

̂
VARt−1

[
M̂Cn,t

]]′
, (B.54)

̂
COVt−1

[
M̂Ct, P̂t

]
≡
[

̂
COVt−1

[
M̂C1,t, P̂t

]
, . . . ,

̂
COVt−1

[
M̂Cn,t, P̂t

]]′
. (B.55)

Note that ̂
VARt−1

[
M̂Ci,t

]
and ̂

COVt−1

[
M̂Ci,t, P̂t

]
are log-deviations ofVARt−1

[
M̂Ci,t

]
andCOVt−1

[
M̂Ci,t, P̂t

]
from their steady states, respectively and ι is an n× 1 vector of 1’s.

Substitute (B.38), (B.39), (B.40), (B.54), and (B.55) into (B.41):

P̂t =Ξ
{[

I + ÃL (I − Ξ)
]
◦
[
I + ÃL (I − Ξ)

]
− 2

[
I + ÃL (I − Ξ)

]
◦
[
ιω′L (I − Ξ)

]}
Σσσt

+ (I − Ξ)
[
−zt + ÃP̂t

]
.

Solving for P̂t gives us (21).

C Details on the Quantitative Model

C.1 Equilibrium Conditions

1. Marginal utility of consumption:
λt = C−σ

t (C.56)

2. Labor supply condition:
λtwi,t = H

− 1
ν

t h
1
ν
i,t, i = 1, . . . , n (C.57)

3. Total hours worked:
Ht =

[ n∑
i=1

h
1+ν
ν

i,t

] ν
1+ν

(C.58)

4. Bond Euler equation:
λt = βEt

[
λt+1

Rt

Πt+1

]
(C.59)
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5. Capital Euler equation:

µi,t = βEt

[
λt+1mci,t+1α

k
i

yi,t+1

ki,t
+ µi,t+1(1− δ)

]
, i = 1, . . . , n (C.60)

6. Investment optimality condition:

λtp
q
i,t = µi,t

{
1− κ

2

(
xi,t
xi,t−1

− 1

)2

− κ

(
xi,t
xi,t−1

− 1

)
xi,t
xi,t−1

}

+ βκEt

{
µi,t+1

(
xi,t+1

xi,t
− 1

)(
xi,t+1

xi,t

)2
}
, i, j = 1, . . . , n

(C.61)

7. Sectoral investment growth:

∆xi,t =
xi,t
xi,t−1

, i = 1, . . . , n (C.62)

8. Capital accumulation equation:

ki,t = (1− δ)ki,t−1 +

{
1− κ

2

(
xi,t
xi,t−1

− 1

)2}
xi,t, i = 1, . . . , n (C.63)

9. Consumption demand:
ci,t = ωi (pi,t)

−εc Ct, i = 1, . . . , n (C.64)

10. Sectoral price index:

1 =

[
n∑

i=1

ωip
1−εc
i,t

] 1
1−εc

(C.65)

11. Production function:

yi,t(l) = ezi,t(ki,t(l))
αk
i (hi,t(l))

αh
i (m̃i,t(l))

1−αk
i −αh

i , i = 1, . . . , n (C.66)

12. Labor demand:
wi,t = mci,tα

h
i

yi,t(l)

hi,t(l)
, i = 1, . . . , n (C.67)

13. Intermediate inputs demand (1):

pmi,t = mci,t(1− αk
i − αh

i )
yi,t(l)

m̃i,t(l)
, i, j = 1, . . . , n (C.68)

40



14. Intermediate inputs demand (2):

pmi,t =

 n∑
j=1

aijp
1−εm
j,t

 1
1−εm

, i = 1, . . . , n (C.69)

15. Intermediate inputs demand (3):

mij,t = aij

(
pj,t
pmi,t

)−εm

m̃i,t, i, j = 1, . . . , n (C.70)

16. Investment inputs demand (1):

pqi,t =

 n∑
j=1

bijp
1−εq
j,t

 1
1−εq

, i = 1, . . . , n (C.71)

17. Investment inputs demand (2):

qij,t = bij

(
pj,t
pqi,t

)−εq

xi,t, i, j = 1, . . . , n (C.72)

18. Sectoral output and input:
ỹi,t = ∆i,tyi,t, i = 1, . . . , n, (C.73)

where ỹi,t =
∫ 1
0 yi,t(l)dl and∆i,t ≡

∫ 1
0

(
Pi,t(l)
Pi,t

)−θ
dl.

19. Law of motion for price dispersion:

∆i,t = (1− ξi)

(
p∗i,t
pi,t

)−θ

+ ξi

(
Π

πi,t

)−θ

, i = 1, . . . , n (C.74)

20. Sectoral resource constraint:

yi,t = ci,t +
n∑

j=1

mji,t +
n∑

j=1

qji,t, i = 1, . . . , n (C.75)

21. Sectoral GDP:
GDPi,t = pi,tyi,t − pmi,tm̃i,t, i = 1, . . . , n (C.76)

22. Optimal reset price (I):
p∗i,t =

(
θ

θ − 1

)
Pn
i,t

P d
i,t

, i = 1, . . . , n (C.77)
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23. Optimal reset price (II):

Pn
i,t = λtmci,tyi,t + ξiβEt

[(πi,t+1

Π

)θ
Pn
i,t+1

]
, i = 1, . . . , n (C.78)

24. Optimal reset price (III):

P d
i,t = λtyi,t + ξiβEt

[(πi,t+1

Π

)θ−1
(
πi,t+1

Πt+1

)
P d
i,t+1

]
, i = 1, . . . , n (C.79)

25. Law of motion for sectoral price level:

1 = (1− ξi)

(
p∗i,t
pi,t

)1−θ

+ ξi

(
Π

πi,t

)1−θ

, i = 1, . . . , n (C.80)

26. Sectoral inflation:
πi,t =

pi,t
pi,t−1

Πt, i = 1, . . . , n (C.81)

27. Aggregate resource constraint:
Ct +Xt = Yt (C.82)

28. Total investment:
Xt =

n∑
i=1

pqi,txi,t (C.83)

29. Monetary policy:
Rt

R
=

(
Rt−1

R

)ρR
{(

Πt

Π

)ϕΠ
(
Yt
Y

)ϕY
}1−ρR

(C.84)

C.2 Solving for the Steady State

To solve for the steady state, I first normalize sectoral prices pi = 1, i, . . . , n. This in turn implies
pmi = pqi = 1 from (C.69) and (C.71). In addition, I normalize to scale of the economy by setting
the steady-state aggregate consumption to C = 1. This immediately implies, from (C.56), lnλ = 0.
Finally, I guess the steady-state sectoral hours as h̃i, i, . . . , n. Given the guess of the sectoral hours,

the guessed aggregate hours is given by H̃ =

[∑n
i=1 h̃

1+ν
ν

i

] ν
1+ν

using (C.58).
Evaluating (C.61) at the steady state, we have

1
n×1

lnλ = lnµ = 0
n×1

, (C.85)

where µ ≡ [µ1, . . . , µn]
′. From (C.64), we have

ci = ωi,
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where in a vector form can be written as
c = ω. (C.86)

Evaluating (C.77), (C.78), and (C.79) at the steady states, the real marginal cost can be ex-
pressed as

mci =
θ − 1

θ
. (C.87)

Substituting (C.87) into (C.60), we have

1− β(1− δ)

β
(
θ−1
θ

) µi = λαk
i

yi
ki
,

which taking logs and re-arranging and using (C.85), gives the expression for sectoral capital in a
vector form:

lnk = lnαk + lny − 1
n×1

ln

[
1− β(1− δ)

β
(
θ−1
θ

) ]
, (C.88)

where k = [k1, . . . , kn]
′, αk = [αk

1 , . . . , α
k
n]

′, and y = [y1, . . . , yn]
′.

Evaluating (C.57) and (C.67) at the steady state and also using (C.87), the sectoral hours in a
vector form, given the guessed h̃i and H̃ can be expressed as

lnh = 1
n×1

ln

(
1− θ

θ

)
+ lnαh + lny +

1

ν
1

n×1
ln H̃ − 1

ν
ln h̃, (C.89)

where h = [h1, . . . , hn]
′, αh = [αh

1 , . . . , α
h
n]

′, and h̃ = [h̃1, . . . , h̃n]
′.

Evaluating (C.68) at the steady state and also using (C.87), the intermediate input demand can
be expressed as

ln m̃ = 1
n×1

ln

(
θ − 1

θ

)
+ ln

(
1

n×1
−αk −αh

)
+ lny, (C.90)

where m̃ = [m̃1, . . . , m̃n]
′.

Evaluating (C.66) at the steady state and taking logs, we can express the production function
in a vector form:

lny = z + αk
d lnk + αh

d lnh+ (I − αk
d − αh

d) ln m̃, (C.91)

where z = [z1, . . . , zn]
′, αk

d = diag(αk), and αh
d = diag(αh).

Substitute (C.88), (C.89), and (C.90) into (C.91) and rearranging,
(
I − αk

d − αh
d − (I − αk

d − αh
d)
)

︸ ︷︷ ︸
=0

lny = z + 1 ln

(
1− θ

θ

)

+

[
αk
d

(
lnαk − 1 ln

[
1− β(1− δ)

β

])
+ αh

d

(
lnαh +

1

ν
1 ln H̃ − 1

ν
ln h̃

)
+ (I − αk

d − αh
d) ln(1−αk −αh)

]
︸ ︷︷ ︸

≡(A)

.

(C.92)
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Thus we can express sectoral productivity as a function of guessed h̃:

z = −
(
1 ln

(
1− θ

θ

)
+ (A)

)
.

Evaluating (C.75) at the steady state and substituting in (C.68), (C.70), and (C.72) we have

c+Mmyy +B′x = y, (C.93)

where x = [x1, . . . , xn]
′ and

Mmy =


(
θ−1
θ

)
(1− αk

1 − αh
1)a11 . . .

(
θ−1
θ

)
(1− αk

n − αh
n)an1

... . . . ...(
θ−1
θ

)
(1− αk

1 − αh
1)a1n . . .

(
θ−1
θ

)
(1− αk

n − αh
n)ann

 .

Take an exponential on (C.88):

ki = exp

(
lnαk

i − ln

[
1− β(1− δ)

β
(
θ−1
θ

) ])
︸ ︷︷ ︸

≡Ki

yi,

and using (C.63),
x = δk = δMky,

where Mk = diag
(
[K1, . . . ,Kn]

′) . Substitute this into (C.93) to obtain y as a function of parame-
ters and guessed h̃ :

y =
(
I −Mmy − δB′Mk

)−1
c.

Finally, substitute in lny into the right hand side of (C.89) to obtain sectoral hours as a function of
parameters and guessed h̃. Denoting the new sectoral hours as h′, stop if h′ ≈ h̃. Otherwise set
h̃ = h′ and repeat until convergence.

C.3 Risk-adjusted Log-linearized Equilibrium Conditions

1. Marginal utility of consumption:
λ̂t = −σĈt (C.94)

2. Labor supply condition:

λ̂t + ŵi,t = −1

ν
Ĥt +

1

ν
ĥi,t, i = 1, . . . , n (C.95)

3. Total hours worked:
Ĥt =

n∑
i=1

(
hi
H

) 1+ν
ν

ĥi,t (C.96)
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4. Bond Euler equation:

λ̂t = R̂t + Et[λ̂t+1]− Et[Π̂t+1] +
1

2
VARt[λ̂t+1] +

1

2
VARt[π̂t+1]− COVt[λ̂t+1, Π̂t+1] (C.97)

5. Capital Euler equation:

µ̂i,t = {1− β(1− δ)}
[
Et[λ̂t+1] + Et[m̂ci,t+1] + Et[ŷi,t+1]− k̂i,t

]
+ β(1− δ)Et[µi,t+1]

+ {1− β(1− δ)}
[
1

2
VARt[λ̂t+1 + m̂ci,t+1] +

1

2
VARt[ŷi,t+1] + COVt[λ̂t+1 + m̂ci,t+1, ŷi,t+1]

]
+

1

2
β(1− δ)VARt[µ̂i,t+1], i = 1, . . . , n

(C.98)

6. Investment optimality condition:

λ̂t + p̂qi,t = µ̂i,t − κ∆x̂i,t

+ βκEt[∆x̂i,t+1] + βκ

[
5

2
VARt[∆x̂i,t+1] + COVt(µ̂i,t+1,∆x̂i,t+1)

]
, i, j = 1, . . . , n

(C.99)

7. Sectoral investment growth:

∆x̂i,t = x̂i,t − x̂i,t−1, i = 1, . . . , n (C.100)

8. Capital accumulation equation:

k̂i,t = (1− δ)k̂i,t−1 + δx̂i,t, i = 1, . . . , n (C.101)

9. Consumption demand:
εcp̂i,t + ĉi,t = Ĉt, i = 1, . . . , n (C.102)

10. Sectoral price index:
0 =

n∑
i=1

ωip̂i,t, (C.103)

11. Production function:

ŷi,t(l) = zi,t + αk
i k̂i,t(l) + αh

i ĥi,t(l) + (1− αk
i − αh

i )
̂̃mi,t(l), i = 1, . . . , n (C.104)

12. Labor demand:
ŵi,t = m̂ci,t + ŷi,t(l)− ĥi,t(l), i = 1, . . . , n (C.105)
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13. Intermediate inputs demand (I):

p̂mi,t = m̂ci,t + ŷi,t(l)− ̂̃mi,t(l), i, j = 1, . . . , n (C.106)

14. Intermediate inputs demand (II):

p̂mi,t =
n∑

j=1

aij p̂j,t, i = 1, . . . , n (C.107)

15. Intermediate inputs demand (III):

m̂ij,t = −εm
(
p̂j,t − p̂mi,t

)
+ ̂̃mi,t, i, j = 1, . . . , n (C.108)

16. Investment inputs demand (I):

p̂qi,t =
n∑

j=1

bij p̂j,t, i = 1, . . . , n (C.109)

17. Investment inputs demand (II):

q̂ij,t = −εq

(
p̂j,t − p̂qi,t

)
+ x̂i,t, i, j = 1, . . . , n (C.110)

18. Sectoral output and input: ̂̃yi,t = ∆̂i,t + ŷi,t, i = 1, . . . , n (C.111)

19. Law of motion for price dispersion:

∆̂i,t = θ(1− ξi)
(
p̂i,t − p̂∗i,t

)
+ θξiπ̂i,t, i = 1, . . . , n (C.112)

20. Sectoral resource constraint:

ŷi,t =
ci
yi
ĉi,t +

n∑
j=1

mji

yi
m̂ji,t +

n∑
j=1

qji
yi

q̂ji,t, i = 1, . . . , n (C.113)

21. Sectoral GDP:

ĜDP i,t =
piyi
GDPi

(p̂i,t + ŷi,t)−
pmi m̃i

GDPi

(
p̂mi,t +

̂̃mi,t

)
, i = 1, . . . , n (C.114)

22. Optimal reset price (I):
p̂∗i,t = P̂n

i,t − P̂ d
i,t, i = 1, . . . , n (C.115)
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23. Optimal reset price (II):

P̂n
i,t = (1− ξiβ)(λ̂t + m̂ci,t + ŷi,t)

+ ξiβ

{
θEtπ̂i,t+1 + EtP̂

n
i,t+1 +

θ2

2
VARt(π̂i,t+1) +

1

2
VARt(P̂

n
i,t+1) + θCOVt(π̂i,t+1, P̂

n
i,t+1)

}
, i = 1, . . . , n

(C.116)

24. Optimal reset price (III):

P̂ d
i,t = (1− ξiβ)(λ̂t + ŷi,t)

+ ξiβ

{
θEtπ̂i,t+1 − Etπ̂t+1 + EtP̂

d
i,t+1 +

θ2

2
VARt(π̂i,t+1) +

1

2
VARt(P̂

d
i,t+1 − π̂t+1) + θCOVt(π̂i,t+1, P̂

d
i,t+1 − π̂t+1)

}
, i = 1, . . . , n

(C.117)

25. Law of motion for sectoral price level:

0 = (1− ξi)
(
p̂∗i,t − p̂i,t

)
− ξiπ̂i,t, i = 1, . . . , n (C.118)

26. Sectoral inflation:
π̂i,t = p̂i,t − p̂i,t−1 + Π̂t, i = 1, . . . , n (C.119)

27. Aggregate resource constraint:
CĈt +XX̂t = Y Ŷt (C.120)

28. Total investment:
XX̂t =

n∑
i=1

pqixi

(
p̂qi,t + x̂i,t

)
(C.121)

29. Monetary policy:
R̂t = ρRR̂t−1 + (1− ρR)

(
ϕΠΠ̂t + ϕY Ŷ t

)
(C.122)

C.4 Risk-adjusted Log-linearized Equilibrium Conditions in a Vector Form

1. Marginal utility of consumption:
λ̂t = −σĈt (C.123)

2. Labor supply condition:
1λ̂t + ŵt = −1

ν
1Ĥt +

1

ν
ĥt (C.124)

3. Total hours worked:
Ĥt = Vhĥt, (C.125)

where Vh =

[(
h1
H

) 1+ν
ν

, . . . ,
(
hn
H

) 1+ν
ν

]′
.
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4. Bond Euler equation:

λ̂t = R̂t + Et[λ̂t+1]− Et[Π̂t+1] +
1

2
VARt[λ̂t+1] +

1

2
VARt[π̂t+1]− COVt[λ̂t+1, Π̂t+1] (C.126)

5. Capital Euler equation:

µ̂t = {1− β(1− δ)}
[
1Et[λ̂t+1] + Et[m̂ct+1] + Et[ŷt+1]− k̂t

]
+ β(1− δ)Et[µ̂t+1]

+ {1− β(1− δ)}
[
1

2
VARt[1λ̂t+1 + m̂ct+1] +

1

2
VARt[ŷt+1] + COVt[1λ̂t+1 + m̂ct+1, ŷt+1]

]
+

1

2
β(1− δ)VARt[µ̂t+1]

(C.127)

6. Investment optimality condition:

1λ̂t + p̂q
t = µ̂t − κ∆x̂t

+ βκEt[∆x̂t+1] + βκ

[
5

2
VARt[∆x̂t+1] + COVt(µ̂t+1,∆x̂t+1)

] (C.128)

7. Sectoral investment growth:
∆x̂t = xt − xt−1 (C.129)

8. Capital accumulation equation:

k̂t = (1− δ)k̂t−1 + δx̂t (C.130)

9. Consumption demand:
εcMcpp̂t + ̂̃ct = 1

nc×1
Ĉt, (C.131)

where Mcp is a matrix where we remove, from I
n×n

, rows corresponding to zero elements in
ω ≡ [ω1, . . . , ωn]

′, ̂̃ct is a vector that removes ĉi,t corresponding to zero elements in ω, and nc

is the length of ̂̃ct.
10. Sectoral price index:

0 = ω′p̂t (C.132)

11. Production function:

ŷt = zt + αk
dk̂t−1 + αh

dĥi,t + (I − αk
d − αh

d)
̂̃mt (C.133)

12. Labor demand:
ŵt = m̂ct + ŷt − ĥt (C.134)
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13. Intermediate inputs demand (I):

p̂m
t = m̂ct + ŷt − ̂̃mt (C.135)

14. Intermediate inputs demand (II):
p̂m
t = Ap̂t (C.136)

15. Intermediate inputs demand (III):

m̂t = εmMm
1 p̂m

t − εmMm
2 p̂t +Mm

1
̂̃mt (C.137)

where m̂t is a (
∑n

i=1 nmi ×1) vector that collects the log-deviations ofmij,t from all non-zero
elements of steady-statemij :

m̂t ≡ [m̂11,t, . . . , m̂1n,t, . . . , m̂n1,t, . . . , m̂nn,t]
′ ,

where nmi is the number of non-zero elements in the steady-state intermediate inputs use by
sector i: [mi1, . . . ,min]

′. I define matrices Mm
1 as

Mm
1∑n

i=1 nmi×n

≡


1

nm1×1
0

. . .
0 1

nmn×1

 ,

and Mm
2 is a (

∑n
i=1 nmi × n) matrix where we remove rows corresponding to zero elements

in vec(A′) from a matrix 1
n×1

⊗ I
n×n

.

16. Investment inputs demand (I):
p̂q
t = Bp̂t (C.138)

17. Investment inputs demand (II):

q̂t = εqM
q
1 p̂

q
t − εqM

q
2 p̂t +M q

1 x̂t (C.139)

where q̂t is a (
∑n

i=1 nqi × 1) vector that collects the log-deviations of qij,t from all non-zero
elements of steady-state qij :

q̂t ≡ [q̂11,t, . . . , q̂1n,t, . . . , q̂n1,t, . . . , q̂nn,t]
′ ,

where nqi is the number of non-zero elements in the steady-state intermediate inputs use by
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sector i: [qi1, . . . , qin]′. I define matrices M q
1 as

M q
1∑n

i=1 nqi×n

≡


1

nq1×1
0

. . .
0 1

nqn×1

 ,

andM q
2 is a (∑n

i=1 nqi ×n)matrix where we remove rows corresponding to zero elements in
vec(B′) from a matrix 1

n×1
⊗ I

n×n
.

18. Sectoral output and input: ̂̃yt = ∆̂t + ŷt (C.140)

19. Law of motion for price dispersion:

∆̂t = θ(I − diag(ξ)) (p̂t − p̂∗
t ) + θdiag(ξ)π̂t (C.141)

20. Sectoral resource constraint:

Syŷt = Sc
̂̃ct + Smm̂t + Sqq̂t,

where Sy = diag(y), Sc is a matrix where we remove zero columns from diag(c), and Sm is a
matrix constructed from the vectorm such that

Sm
n×

∑n
i=1 nmi

= [Sm1 , · · · , Smn ],

where

Smi
n×nmi

=


mi1 0

. . .
0 min

 ,

and Sq is a matrix constructed from the vector q such that

Sq
n×

∑n
i=1 nqi

= [Sq1 , · · · , Sqn ],

where

Sqi
n×nqi

=


qi1 0

. . .
0 qin

 .
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We can eliminate m̂t and q̂t by substituting in (C.136) and (C.138):

Syŷt = Sc
̂̃ct + Sm

[
εmMm

1 p̂m
t − εmMm

2 p̂t +Mm
1
̂̃mt

]
+ Sq [εqM

q
1 p̂

q
t − εqM

q
2 p̂t +M q

1 x̂t]

= Sc
̂̃ct + εmSmMm

1 p̂m
t + εqSqM

q
1 p̂

q
t − [εmSmMm

2 + εqSqM
q
2 ] p̂t + SmMm

1
̂̃mt + SqM

q
1 x̂t

(C.142)

21. Sectoral GDP:

diag(GDP )ĜDP t = diag(y) (p̂t + ŷt)− diag(m̃)
(
p̂m
t + ̂̃mt

)
(C.143)

22. Optimal reset price (I):
p̂∗
t = P̂ n

t − P̂ d
t (C.144)

23. Optimal reset price (II):

P̂ n
t = (I − βdiag(ξ))(1λ̂t + m̂ct + ŷt)

+ βdiag(ξ)

{
θEt[π̂t+1] + Et[P̂

n
t+1] +

θ2

2
VARt(π̂t+1) +

1

2
VARt(P̂

n
t+1) + θCOVt(π̂t+1, P̂

n
t+1)

}
(C.145)

24. Optimal reset price (III):

P̂ d
t = (I − βdiag(ξ))(1λ̂t + ŷt)

+ βdiag(ξ)

{
θEt[π̂t+1]− Et[1π̂t+1] + Et[P̂

d
t+1] +

θ2

2
VARt[π̂t+1] +

1

2
VARt[P̂

d
t+1 − 1π̂t+1]

+ θCOVt[π̂t+1, P̂
d
t+1 − 1π̂t+1]

}
(C.146)

25. Law of motion for sectoral price level:

0 = (I − diag(ξ)) (p̂∗
t − p̂t)− diag(ξ)π̂t (C.147)

26. Sectoral inflation:
π̂t = p̂t − p̂t−1 + 1π̂t (C.148)

27. Aggregate resource constraint:
CĈt +XX̂t = Y Ŷt (C.149)

28. Total investment:
XX̂t = x′ (p̂q

t + x̂t) (C.150)
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29. Monetary policy:
R̂t = ρRR̂t−1 + (1− ρR)

(
ϕΠΠ̂t + ϕY Ŷ t

)
(C.151)
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