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I study a business cycle model where agents learn about the fundamentals by accumulat- 

ing capital. During recessions, agents invest less, and this generates noisier estimates of 

macroeconomic conditions and an increase in uncertainty. The endogenous increase in ag- 

gregate uncertainty further reduces economic activity and thus gives rise to a multiplier 

effect that amplifies aggregate fluctuations. To discipline learning dynamics, I parametrize 

the model so that it matches not only standard business cycle moments but also survey 

data on macroeconomic forecasts. I find that the uncertainty multiplier amplifies output 

standard deviation by 16%. 
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1. Introduction 

How important is time-varying aggregate uncertainty for macroeconomic fluctuations? A rapidly growing literature

argues that shocks to uncertainty are a significant source of business cycle dynamics—see, for example, Bloom (2009) ,

Fernández-Villaverde et al. (2011) , Gourio (2012) , and Christiano et al. (2014) . However, the literature faces two important

criticisms. In uncertainty shock theories, an exogenous increase in the volatility of structural shocks cause recessions. First,

fluctuations in uncertainty may be, at least partially, endogenous. 2 The distinction is crucial because if uncertainty is an

equilibrium object that is coming from agents’ actions, policy experiments that treat uncertainty as exogenous are subject

to the Lucas critique. Second, some authors ( Bachmann and Bayer 2013, Born and Pfeifer 2014 , and Chugh 2016 ) have argued

that, given small and transient fluctuations in measured volatility, changes in uncertainty have negligible effects. 

Motivated by these criticisms, I present a business cycle model where the level of economic activity influences the level

of aggregate uncertainty through informational frictions. The endogenous movement in uncertainty, in turn, affects the level

of economic activity through precautionary behavior and countercyclical markups. My goal is to quantify the role of this

two-way feedback between uncertainty and economic activity in explaining the fluctuations of macroeconomic variables. 

I embed the idea of asymmetric learning ( Veldkamp 2005 and Van Nieuwerburgh and Veldkamp 2006 ) on investment

into a standard DSGE framework with several real and nominal rigidities ( Christiano et al. 2005 ). Since investment is the

most volatile component of the business cycle and fluctuations in various measures of aggregate uncertainty (based on, for

example, GDP forecasts or VIX) are also quite large, asymmetric learning through investment is a natural choice for modeling

countercyclical uncertainty that depends on the level of economic activity. 3 
∗ Corresponding author. 

E-mail addresses: hsaijo@ucsc.edu , hikaru.saijo@gmail.com 

1 This work is based on the first chapter of my Ph.D. dissertation at the University of Pennsylvania. I am grateful to my advisor, Jesús Fernández- 
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2 See Bachmann et al. (2013) for supporting VAR evidence. 
3 Learning about aggregate productivity through production, for example, would generate much smaller fluctuations in uncertainty and hence amplifica- 

tion. In general, it is also possible to study asymmetric learning on firms’ idiosyncratic demand conditions. I did not pursue this route because aggregate 
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I introduce information frictions by subjecting the economy to aggregate shocks that agents cannot directly observe,

namely, shocks to the marginal efficiency of investment and shocks to the depreciation rate of capital. Because the former

are persistent while the latter are transitory, what matters for agents’ decision is the evolution of the efficiency of invest-

ment. Agents use the path of capital stock and investment to form their estimates in a Bayesian manner. 4 However, the

capital stock is not perfectly revealing about the unobservable shocks because it is subject to a non-invertibility problem:

Agents cannot tell whether an unexpectedly high realization of capital stock is due to a high efficiency of investment or to

a low depreciation rate of capital. 

In the model, the level of investment endogenously determines the informativeness of the capital stock about the shocks

to the efficiency of investment. When agents invest less, their estimates are imprecise because the level of capital stock

is largely determined by the realization of the depreciation shock. Conversely, when they invest more, their estimates are

accurate because the current capital mostly reflects shocks to the efficiency of investment. Thus, uncertainty about the

efficiency of investment becomes endogenously countercyclical over the business cycle. 

The countercyclical uncertainty gives rise to a novel multiplier effect that amplifies business cycles. Imagine that the

economy is hit by a negative shock that lowers investment (for example, an exogenous tightening of monetary policy).

Since agents learn less about the current period shock to the efficiency of investment, uncertainty increases. This, in turn,

further reduces investment and other economic activity because of countercyclical markups and the reduction in households’

spending due to their precautionary behavior. The opposite channel works when the economy is hit by a positive shock. I

call this amplification mechanism the uncertainty multiplier . 

To measure the size of the uncertainty multiplier, I perform numerical simulations. I estimate the parameters using the

simulated method of moments (SMM) so that the model matches the business cycle properties of the postwar U.S. quarterly

data. An interesting challenge I face is that the choice of the variance parameters has important effects on the strength

of learning dynamics. More specifically, when the variance of the depreciation shock is very small compared to that of

the shock to the efficiency of investment, the capital stock is almost perfectly revealing about the shock to the efficiency

of investment. Conversely, when the depreciation shock is very large, the capital stock is uninformative and little learning

takes place. In both cases, fluctuations in aggregate uncertainty are negligible. To ensure that agents face a realistic amount

of information frictions, I use moments from the Survey of Professional Forecasters (SPF) in the SMM so that the model

replicates the properties of macroeconomic forecasts. 

I find that, under a full set of real and nominal rigidities, endogenous uncertainty amplifies the standard deviation of

output by 16-20%. The mechanism also amplifies other real variables, such as investment and hours, by a similar amount.

The size of the amplification is nontrivial due to three main features of the model. First, the uncertainty process is volatile

and persistent because it is tied to the movement of investment. Second, as in Basu and Bundick (2016) and Fernández-

Villaverde et al. (2015) , nominal rigidities amplify the effects of time-varying uncertainty because of the countercyclical

markups. Third, real rigidities also amplify the effects because they affect the inference about the size of uncertainty. The

third point stands in sharp contrast to the case of exogenous uncertainty, where real rigidities reduce the overall effect of

uncertainty. 

Finally, I provide an external validation of the theory by conducting three tests. First, I show that the model can account

for a sizable fraction of fluctuations in uncertainty. Second, I show that the model can replicate the VAR impulse responses.

In particular, the model can account for the negative relationship between output and uncertainty and it also reproduces

gradual responses of the two variables. This is because in the model uncertainty is inversely related to investment, which

exhibits hump-shaped dynamics, and this uncertainty in turn induces gradual adjustments by households. Finally, I conduct

Granger causality tests between output and uncertainty and find that the results from the model are in line with the data.

For both data and the model, the hypothesis that output does not Granger-cause uncertainty are rejected at the 5% level.

On the other hand, the hypothesis that uncertainty does not Granger-cause output cannot be rejected at the 10% level.

Intuitively, in my model output has an explanatory power for the future level of uncertainty because uncertainty is driven

by changes in economic activity. Since there is no exogenous impulse to uncertainty that moves economic activity, once we

control for lagged output, lagged uncertainty is not useful in forecasting the level of output. 

The rest of the paper is organized as follows. The next section describes the contributions of this paper with re-

spect to the existing literature. Section 3 presents the model and Section 4 discusses its solution and parameteriza-

tion. Section 5 presents the results and discusses in detail the mechanisms that determine the size of the amplification.

Section 6 conducts empirical tests of my model and Section 7 concludes. 

2. Connections to the literature 

This paper is related to several strands of the literature. First, it is related to a growing literature on macroeconomic

uncertainty shocks. For example, Basu and Bundick (2016) study the effects of volatility shocks to aggregate technology and

preference in a standard New Keynesian model. Bianchi et al. (2017) consider Knightian uncertainty shocks to firms’ financial
dynamics become intractable due to nonlinearities at the firm level. In a related paper, Ilut and Saijo (2016) are able to study a model where firms learn 

about their demand through production because of their assumption of Knightian uncertainty. 
4 In the model, all information necessary for optimal learning is contained in the path of capital stock and investment. While agents have access to other 

endogenous variables, including prices, those variables do not reveal additional information about the unobservable shocks. 
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conditions and characterize their impacts on asset prices. Other examples include Gourio (2012) , Fernández-Villaverde et al.

(2015) , Born and Pfeifer (2014) , and Ilut and Schneider (2014) . 5 A distinct but related literature studies the effects of micro-

level uncertainty shocks. A leading example is a paper by Bloom (2009) , who shows that an exogenous increase in the

volatility of firm-level productivity reduces output through a “wait-and-see” effect due to investment irreversibility. See also

Arellano et al. (2016) , Christiano et al. (2014) , Chugh (2016) , Gilchrist et al. (2014) , and Schaal (2015) . In this paper, I show

that time-varying aggregate uncertainty could be an important amplification (rather than an impulse) mechanism of the

business cycle. The difference is important for a structural analysis because now uncertainty is an equilibrium object that is

policy-variant. 6 

Another important difference from the macro uncertainty shock literature is that, in my model, changes in uncertainty

are not necessarily followed by changes in realized volatility. The previous literature has focused on theories where un-

certainty shocks generate actual changes in volatility of macro variables. 7 Here there is also an interesting parallel with

the idiosyncratic uncertainty shock literature. Bloom (2009) , who calibrates the uncertainty process based on the VIX, and

Christiano et al. (2014) , who estimate cross-sectional risk shocks using macroeconomic data, find relatively large effects of

uncertainty shocks while Chugh (2016) , who measures cross-sectional risk fluctuations using microeconomic evidence, finds

smaller effects. The tension between those studies suggests that changes in perceived idiosyncratic uncertainty play a quan-

titatively distinct role from shocks to realized micro-level volatility in driving business cycles. In a similar way, my paper

shows that fluctuations in perceived macroeconomic uncertainty can account for a sizable share of aggregate fluctuations

even when they are not reflected in volatility of macro variables. 

Several papers attempt to account for the countercyclical firm-level volatility through conventional first-moment shocks.

For example, in Bachmann and Moscarini (2012) , recessions induce firms to price-experiment, which in turn raises the

cross-sectional dispersion of price changes. See also Decker et al. (2015) , Kehrig (2015) , and Tian (2015) . Their focus is on

the explanation of the movement of ex-post volatility. I go one step further by highlighting the implications of ex-ante

uncertainty. This is why I can show that uncertainty is not only a by-product of agents’ response to first-moment shocks,

but also an important factor that affects real allocations. 

The main mechanism of this paper builds on a literature on asymmetric learning, for example, Veldkamp (2005) ,

Van Nieuwerburgh and Veldkamp (2006) , Ordoñez (2013) , and Görtz and Tsoukalas (2013) . They argue that the time-varying

speed of learning about the macroeconomic conditions could explain the asymmetries in growth rates over the business cy-

cle. When the economy passes the peak of a boom, agents are able to precisely detect the slowdown, leading to an abrupt

crash. At the end of the recession, agents’ estimates about the extent of recovery are noisy, slowing reactions and delaying

booms. My contribution is to explore the direct effects of endogenous fluctuations in perceived uncertainty about aggregate

fundamentals that shift the levels of macro variables. Recessions are deeper because high uncertainty leads precautionary

households to cut consumption. Booms are stronger for the opposite reason. This channel has been overlooked in the pre-

vious literature. 8 

Because the basic framework of this paper is based on Van Nieuwerburgh and Veldkamp (2006) , I elaborate on how my

model differ from theirs. First, while their model is a parsimonious real business cycle model, my model features nomi-

nal rigidities. The advantage of introducing sticky prices is that, as we see below, it induces co-movement in response to

an endogenous change in uncertainty. Second, in their model the underlying unobservable fundamental follows a discrete

Markov process while in my model it takes continuous values. This allows me to conduct impulse response analysis as in

the standard model. Third, in my model agents learn about the marginal efficiency of investment through investment while

in their paper learning about productivity occurs through production. As mentioned above, because investment is the most

volatile component of the business cycle, my approach is a natural starting point to study fluctuations in uncertainty due to

economic activity. Adding learning through production would further increase the size of the uncertainty multiplier. 

A recent work by Fajgelbaum et al. (2016) independently develops similar ideas. There are two key distinctions. First,

in their paper the level of aggregate uncertainty is related to the number of firms investing (extensive margin), while

in my paper the level of investment influences the level of uncertainty (intensive margin). As in Van Nieuwerburgh and

Veldkamp (2006) , this specification allows me to perform realistic quantitative analysis without losing tractability. 9 Second,

in their paper time-varying uncertainty feeds back into the level of economic activity through irreversible investment,

while in my paper uncertainty influences business cycles through countercyclical markups due to nominal rigidities. The
5 See also Fernández-Villaverde et al. (2011) , who show that volatility shocks to real interest rates generate sizable contractions in an otherwise standard 

small open economy model. 
6 Bachmann et al. (2013) and Ludvigson et al. (2016) provide empirical evidence suggesting that high uncertainty is at least partly due to an endogenous 

response to recessions. 
7 The exception is Ilut and Schneider (2014) , who construct a business cycle model where Knightian uncertainty shocks affect ambiguity-averse agents’ 

confidence in probability assessments about the productivity process. 
8 My model also features imperfect information about the growth rate of the marginal efficiency of investment. In this respect, the paper is also related 

to the literature that studies business cycle implications of learning about the trend of technology growth (for example, Edge et al. 2007 and Tambalotti 

2003 ). 
9 The method I use to solve the model may be of independent interest. I first analytically derive the law of motion for posterior variance (uncertainty) 

and then use a non-linear approximation to solve for the equilibrium dynamics. Senga (2015) and Ilut and Saijo (2016) , for example, use related solution 

methods. 
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advantage of my approach is that the markup channel generates conditional comovements among real variables in response

to time-varying uncertainty ( Basu and Bundick 2016 ). 

3. The model 

I embed a learning problem into the capital accumulation process of a standard DSGE framework ( Christiano et al. 2005,

Justiniano et al. 2010 , and Smets and Wouters 2007 ). This framework is a natural laboratory for my quantitative investiga-

tion, since it has now become the foundation of applied research in both academic and government institutions. 

In the first subsection, I describe the information frictions. In the second subsection, I present the standard part of the

model. 

3.1. Learning and countercyclical uncertainty 

I divide this subsection into several parts. First, I describe the setup. Second, I express the learning process as a Kalman

filtering problem. Third, I present a simple example that illustrates the key properties of the filtering problem. Finally, I

rewrite the capital accumulation process from the perspective of the agents. This clarifies the impact of changes in uncer-

tainty on the agents’ decision making. 

3.1.1. Setup 

The law of motion for capital held by each household, k t , is subject to two types of aggregate disturbances: 

k t = (1 − δt ) k t−1 + μt i t−1 , (1) 

where i t−1 is the investment undertaken by individual households. The depreciation shock, δt , follows 

δt = δ − εδ,t , 

where εδ, t is i.i.d. distributed from a normal distribution with mean zero and variance σ 2 
δ

. The investment shock, μt , deter-

mines the marginal efficiency of investment. I assume that μt follows the stochastic process 

μt = g t−1 + (1 − ρμ) μ + ρμμt−1 + εμ,t , 

g t = ρg g t−1 + εg,t , 

where εμ, t and εg , t are i.i.d. distributed from a normal distribution with mean zero and variance σ 2 
μ and σ 2 

g , respectively.

The growth shock, g t , controls the growth rate of μt . 
10 As we see below, one of the key assumptions here is that while the

shock to depreciation is transitory, the investment shock is persistent. First, the proxy for the depreciation shock shows less

persistence than that of the investment shock. The first-order autocorrelation of realized annual depreciation rate, calculated

from the consumption of fixed capital, is 0.37 while for the Baa credit spread (Moody’s seasoned Baa corporate bond yield

relative to yield on 10-year treasury), a common proxy for the investment shock in the literature, the first-order autocor-

relation at annual frequency is 0.68. Second, I also consider an alternative setting where I relax the assumption of an i.i.d.

depreciation shock and allow persistence: 

δt = (1 − ρδ) δ + ρδδt−1 − εδ,t . (2) 

As I argue below, as long as the persistence of the depreciation shock is less than that of the investment shock, the main

theoretical results of the model survive. Quantitatively, I find that the size of the uncertainty multiplier is similar to the one

in the baseline specification. 

Agents cannot directly observe the current or previous values of δt , μt , and g t . This informational assumption gives rise

to a non-invertibility problem: Agents cannot tell whether an unexpectedly high realization of capital stock is due to a

high efficiency of investment or to a low depreciation rate of capital. As a result, they face a signal-extraction problem in

forecasting the evolution of the shocks. Agents use all available information, including the path of capital stock, to form

their estimates. 

As in Veldkamp (2005) and Van Nieuwerburgh and Veldkamp (2006) , I rule out active experimentation and assume that

agents are passive learners. In other words, households do not internalize the effects of their own actions on learning. 11 As

a result, in equilibrium all households choose the same action and hence observing the law of motion of aggregate capital

stock, K t , given by 

K t = (1 − δt ) K t−1 + μt I t−1 , (3) 

does not reveal additional information about the underlying shock. This is because the law of motion (3) contains the same

information about the underlying shock as the law of motion of individual capital stock (1) . The assumption of passive
10 The growth shock is not necessary for the main qualitative results. However, as I show below the shock helps match some of the survey data moments. 
11 The assumption of passive learning is common in the macro learning literature. See, for example, Primiceri (2006) . 
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learning is important. If instead agents are active learners and take into account the effect of their capital and investment

choices on the evolution of beliefs, individual households can perfectly back out the realization of underlying shocks by

slightly deviating from the aggregate law of motion (3) . However, there are two modifications to the baseline setup that

would allow the model to generate countercyclical uncertainty even in an active learning environment. First, it is possible

that agents do not observe the actions of others and that aggregate capital stock is measured with error. Second, even if

agents can completely observe the action of others, those observations are irrelevant if the unobservable shocks ( δt , μt , and

g t ) are idiosyncratic. 12 In what follows, for tractability and computational reasons, I assume passive learning and use the

law of motion of aggregate capital (3) to discuss the Kalman filtering problem. 13 

A literal interpretation of the depreciation shock is that it represents an exogenous change in the physical depreciation

rate of capital. However, as in Gertler and Karadi (2011) and Liu et al. (2011) , a broader interpretation is possible. For exam-

ple, it can represent an economic obsolescence of capital. Alternatively, reallocation of capital may be subject to temporary

frictions and could show up as a change in the “quality” of aggregate capital. 

The investment shock was originally proposed by Greenwood et al. (1988) . In a medium-scale DSGE model similar to the

one employed in this paper, Justiniano et al. (2010) found that the shock is the most important driver of the U.S. business

cycle. An important question is whether the realization of investment shock is reflected in prices such as the relative price

of investment goods to consumption goods. To answer this question, it is useful first to recognize that, as highlighted in

Justiniano et al. (2011) , the investment shock itself can be decomposed into two separate shocks. The first shock is an

investment-specific technology (IST) shock that represents disturbances that affect the transformation of consumption goods

into investment goods. The second shock is a disturbance to the marginal efficiency of investment (MEI) that affects the

transformation of investment goods into installed capital. In equilibrium, the IST shock generates variations in the relative

price of investment goods but the MEI shock does not. Estimation results from several papers indicate that the investment

shock mostly reflects variations in the MEI and not the IST. 14 Intuitively, this is because the observed variation in the price

of investment goods is too small to play a prominent role. Motivated by the evidence, I assume that the investment shock

does not affect the relative price of investment. This assumption implies that agents cannot back out the underlying shocks

by observing prices. In Appendix C , I extend the baseline model so that the production of consumption, investment, and

capital goods are decentralized in different sectors as in Justiniano et al. (2011) . The decentralization is useful because it

allows me to explicitly introduce both IST and MEI shocks while preserving the information friction. I find that the results

from this extended model are very similar to that of the baseline model. 

In previous research, the investment shock is often viewed as a reduced-form disturbance to financial frictions. For ex-

ample, as explained in detail in Justiniano et al. (2011) , the investment shock plays a similar role to that of net worth in

Carlstrom and Fuerst (1997) ’s model. In the original Carlstrom and Fuerst (1997) model, only entrepreneurs have access to

a technology that transforms consumption goods into investment goods and their idiosyncratic productivity is private in-

formation. They finance their production using their own net worth and external funds but the external funds are subject

to agency frictions. Intuitively, the investment shock plays a similar role to that of net worth because net worth lowers

agency cost and acts as a shifter of a capital supply curve. This particular interpretation of the investment shock becomes

problematic if applied directly to my model because net worth and the transformation of consumption goods into installed

investment are observable in the original Carlstrom and Fuerst (1997) model. One way to introduce procyclical learning in

a way that is consistent with models with financial frictions would be to modify the setting so that (i) entrepreneurs com-

bine the investment goods they produced with capital that are subject to idiosyncratic and aggregate depreciation shocks,

(ii) agents cannot observe other entrepreneurs’ decisions and (iii) proxies at the aggregate level for the external finance

premium, such as credit spreads or aggregate net worth, are measured with error. These assumptions ensure that even if

agents know their idiosyncratic conditions, they do not fully reveal aggregate conditions and hence aggregate uncertainty

continues to be countercyclical. 

As summarized in Fig. 1 , the timing of events is as follows: At the end of period t − 1 , agents choose their invest-

ment level I t−1 given the current capital level K t−1 and their estimates about the unobservable state. Then, at the begin-

ning of period t , unobservable shocks are realized. Finally, after observing the level of new capital K t , agents update the

estimates. 
12 Ilut and Saijo (2016) study a business cycle model where firms face Knightian uncertainty about their own profitability and need to learn it through 

production. Interestingly, in their model the degree of amplification is larger under active learning than under passive learning. 
13 The discussion of this paragraph extends to an environment where firms, instead of households, accumulate capital. Potential complications arise when 

a Calvo-type price stickiness is introduced in this environment since firms’ capital decisions become heterogeneous. There are two ways to introduce price 

stickiness without generating the heterogeneity. First, one can assume a Rotemberg-type quadratic price adjustment cost instead of the Calvo friction. Sec- 

ond, as in Bernanke et al. (1999) , one can assume that the monopolistic competition and Calvo pricing happen at the “retail” level. With these assumptions, 

firm-level and aggregate law of motions of capital coincide under passive learning and hence the distinction becomes irrelevant when solving the filtering 

problem. 
14 For example, in Justiniano et al. (2010) , they find that the implied investment shock from the estimation is four times as volatile and weakly correlated 

with the relative price of investment goods. They do not use the relative price of investment in the estimation. Schmitt-Grohe and Uribe (2012) , on the 

other hand, use the investment price to identify all investment shocks and find that the shock can explain only a small fraction of business cycles. Finally, 

Justiniano et al. (2011) estimate a DSGE model that allows for both IST and MEI shocks and use the investment price to identify the IST shock. They find 

that MEI shock is the dominant driver of the business cycle. 
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Fig. 1. Timing of events. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.2. More on the setup: concrete examples 

The information friction in the model is set up in a fairly stylized way. However, the same qualitative feature arises in a

more concrete environment. Below, I provide two examples. 

First, one can consider a setting where the aggregate capital stock is composed of distinct vintages that are hit by stochas-

tic depreciations. 15 The process of μt is persistent, reflecting the view that the productivity of “close-by” vintages are similar.

Let K t denote the sum of all efficiency units of capital available for production in period t : 

K t = 

S ∑ 

s =0 

K t,s 

where K t , s is capital of vintage s that is available at time t . The vintages of capital evolve according to 

K t,s = 

{
μt I t−1 if s = 0 

(1 − δ) K t−1 ,s −1 + εδ
t,s if s ≥ 1 

where εδ
t,s is a stochastic capital depreciation to vintage s at time t . εδ

t,s , s = 1 , . . . , S are distributed from a multivariate

normal distribution with mean zero and covariance matrix �δ . While I assume that draws are independent across time, I

still allow for contemporaneous correlations among εδ
t,s . The evolution of aggregate capital is then given by 

K t = (1 − δ) K t−1 + ˜ εδ
t + μt I t−1 

where ˜ εδ
t ≡ ∑ S 

s =1 ε
δ
t,s are distributed independently across time from a normal distribution with mean zero and some vari-

ance ˜ σδ . 16 Thus, in this example capital depreciation is transitory while the marginal efficiency of investment is persistent. 

Second, as will be discussed in detail below, an important feature of the capital accumulation technology is that it gen-

erates a procyclical signal-to-noise ratio. In Appendix D , I show how this feature also arises from aggregation of investment

units with common and idiosyncratic shocks. 

3.1.3. The Kalman filtering problem 

Agents update their estimates about μt and g t in an optimal (Bayesian) manner. The learning process can be expressed

as a Kalman filtering problem: [
μt 

g t 

]
= 

[
(1 − ρμ) μ

0 

]
+ 

[
ρμ 1 

0 ρg 

][
μt−1 

g t−1 

]
+ 

[
εμ,t 

εg,t 

]
, (4) 

K t − (1 − δ) K t−1 = [ I t−1 0] 

[
μt 

g t 

]
+ K t−1 εδ,t . (5) 

Eq. (4) is the state equation that characterizes the evolution of the unobservable state. Eq. (5) is the measurement equation

that describes the observables as a linear function of the underlying state. I point out two things regarding the measurement

equation. First, εδ, t serves as a measurement error in the filtering system. Second, unlike standard time-invariant systems,

the coefficient matrices are time-varying. 

The key property of the system is that the signal-to-noise ratio is procyclical, which follows from the fact that 
I t−1 
K t−1 

is

procyclical. The flip side implication of this property is that uncertainty is countercyclical . Denote �t as the error-covariance
15 Görtz and Tsoukalas (2013) also consider a model with the vintage view of capital stock. 
16 The depreciation shock is additive in this example while it is attached to capital stock in the baseline model. The difference matters little because 

capital stock is acyclical. 
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matrix of the unobservable states, 

�t = 

[
Var t (μt − ˜ μt ) Cov t (μt − ˜ μt , g t − ˜ g t ) 

· · · Var t (g t − ˜ g t ) 

]
, 

then the elements of �t are decreasing in 

I t−1 
K t−1 

. Intuitively, when agents invest more, their estimates about the efficiency

of investment are accurate because current capital mostly reflects shocks to the efficiency of investment. Conversely, their

estimates are imprecise when they invest less because the level of capital stock is largely determined by the realization of

the depreciation shock. In the extreme case of zero investment, capital stock does not contain any information about the

marginal efficiency of investment. 

3.1.4. Understanding why uncertainty is countercyclical 

I explain how a procyclical signal-to-noise ratio leads to countercyclical uncertainty by going through a simple example.

In particular, assume that there is no growth shock. 17 Then the filtering problem reduces to 

μt = (1 − ρμ) μ + ρμμt−1 + εμ,t , (6)

y t = I t−1 μt + K t−1 εδ,t , (7)

where (6) is the state equation and (7) is the measurement equation. I define y t ≡ K t − (1 − δ) K t−1 . In period t − 1 , agents

enter with the mean estimate ˜ μt−1 and its associated error variance �t−1 ≡ Var t−1 (μt−1 − ˜ μt−1 ) . Then, the period t − 1

prediction of μt and its associated error variance is given by 

˜ μt | t −1 = (1 − ρμ) μ + ρμ ˜ μt−1 

�t | t −1 = ρ2 
μ�t−1 + σ 2 

μ

After observing the outcome y t , they update their estimates according to 

˜ μt = ˜ μt | t −1 + Gain t (y t − I t−1 ̃  μt | t −1 ) , 

where Gain t is the Kalman gain and is given by 

Gain t = 

I 2 t−1 �t | t −1 

I 2 
t−1 

�t | t −1 + K 

2 
t−1 

σ 2 
δ︸ ︷︷ ︸ 

Informativeness of observation 

· 1 

I t−1 ︸︷︷︸ 
Adjustment 

. 

The first term represents the informativeness of observation y t and is given by the variance of the signal divided by the

total variance (the variance of the signal and noise). The term is increasing in 

I t−1 
K t−1 

. The second term is the scale adjustment

term reflecting the fact that μt is multiplied by I t−1 in the observation. 

The error variance associated with ˜ μt is given by 

�t = (1 − Gain t I t−1 )�t | t −1 

= 

K 

2 
t−1 σ

2 
δ

I 2 
t−1 

�t | t −1 + K 

2 
t−1 

σ 2 
δ︸ ︷︷ ︸ 

Un-informativeness of observation 

·�t | t −1 . 

The first line says that the error shrinks as we learn more from the observation; the error is decreasing in the size of the

Kalman gain. The second line says that the error variance is increasing in the un-informativeness of the observation (the

variance of noise divided by the total variance). Since the un-informativeness term is decreasing in 

I t−1 
K t−1 

, �t is decreasing

in 

I t−1 
K t−1 

. Since investment is much more volatile than capital, 
I t−1 
K t−1 

moves almost proportionally to I t−1 . Thus, less investment

leads to more uncertainty. 

3.1.5. Implications of time-varying uncertainty from the perspective of the agents 

How do changes in uncertainty about the current efficiency of investment affect agents’ decision making? The key insight

here is that, because shocks to the efficiency of investment are persistent, uncertainty about the current state translates into

uncertainty about the future realization of capital. 

To see this, it is useful to rewrite the capital accumulation equation from the perspective of the agent at period t − 1 : 

K t = (1 − δt ) K t−1 + ( ̃  μt | t −1 + u t ) I t−1 , 

where ˜ μt | t −1 is the mean forecast of μt at time t − 1 and u t is normally distributed with mean zero and variance σ 2 
u,t . The

innovation u t takes into account not only the exogenous innovation to μt , but also its estimation error: 
17 In the Appendix, I provide a full derivation with the growth shock. 
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u t = μt − ˜ μt | t −1 

= (g t−1 − ˜ g t−1 ) + ρμ(μt−1 − ˜ μt−1 ) + εμ,t , 

and hence its variance is given by 

σ 2 
u,t = ρ2 

μ�11 
t−1 + 2 ρμ�12 

t−1 + �22 
t−1 + σ 2 

μ. 

Thus, the fluctuation in uncertainty shows up as a fluctuation in the variance of the innovation to the mean forecast of

the marginal efficiency of investment. Moreover, this fluctuation in variance is persistent to the extent that investment is

persistent. 

This intuition carries over to the case of unobserved persistent depreciation shock. In this case, the capital accumulation

equation can be rewritten as 

K t = { 1 − (δt | t −1 + e t ) } K t−1 + ( ̃  μt | t −1 + u t ) I t−1 , 

where δt | t −1 is the mean forecast of δt at time t − 1 and the innovation e t is given by 

e t = δt − ˜ δt | t −1 

= ρδ(δt−1 − ˜ δt−1 ) − εδ,t . 

Since the effect of an estimation error about δt to the innovation e t is discounted by ρδ , as long as the persistence of the

depreciation shock is sufficiently lower than that of the investment shock, the overall uncertainty (the sum of the variances

of e t and u t ) is countercyclical. Intuitively, during recessions estimates about the marginal efficiency of investment becomes

noisier but estimates of the depreciation shock becomes more precise. The increase in the variance of u t is larger than the

reduction of the variance of e t as long as ρδ is sufficiently lower than ρμ. 

3.2. Standard part of the model 

I now describe other components of the model. The economy is composed of a final-goods sector, intermediate-goods

sector, household sector, employment sector, and a central bank. I start by describing the production side of the economy. 

3.2.1. The final-goods sector 

In each period t , the final goods, Y t , are produced by a perfectly competitive representative firm that combines a contin-

uum of intermediate goods, indexed by j ∈ [0, 1], with technology 

Y t = 

[∫ 1 

0 

Y 

θp −1 

θp 

j,t 
dj 

] θp 
θp −1 

. 

Y j , t denotes the time t input of intermediate good j and θp controls the price elasticity of demand for each intermediate

good. The demand function for good j is 

Y j,t = 

(
P j,t 

P t 

)−θp 

Y t , (3.1.4) 

where P t and P j , t denote the price of the final good and intermediate good j , respectively. Finally, P t is related to P j , t via the

relationship 

P t = 

[∫ 1 

0 

P 
1 −θp 

j,t 
dj 

] 1 
1 −θp 

. 

3.2.2. The intermediate-goods sector 

The intermediate-goods sector is monopolistically competitive. In period t , each firm j rents K j , t units of capital stock

from the household sector and buys H j , t units of aggregate labor input from the employment sector to produce intermediate

good j using technology 

Y j,t = z t K 

α
j,t H 

1 −α
j,t 

. 

z t is the level of total factor productivity that follows 

z t = (1 − ρz ) z + ρz z t−1 + εz,t , 

where εz , t is i.i.d. distributed from a normal distribution with mean zero and variance σ 2 
z . 

18 

Firms face a Calvo-type price-setting friction: In each period t , a firm can reoptimize its intermediate-goods price with

probability (1 − ξp ) . Firms that cannot reoptimize index their price according to the steady-state inflation rate, π . 
18 I specify the productivity process in levels rather than in logs so that it is consistent with the process of the marginal efficiency of investment. During 

the simulation exercise, the level of productivity never falls below zero. The same remark applies to the preference shock introduced below. 
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3.2.3. The household sector 

There is a continuum of households, indexed by i ∈ [0, 1]. In each period, household i chooses consumption C t , invest-

ment I t , bond purchases B t , and nominal wage W i , t to maximize utility: 

E t 

∞ ∑ 

s =0 

βs d t+ s 

[ 

(C t+ s − bC t+ s −1 ) 
1 −σ

1 − σ
−

H 

1+ η
i,t+ s 

1 + η

] 

, 

where β is a discount factor, b represents consumption habit, σ controls the degree of risk aversion, η controls (the inverse

of) the Frisch labor supply elasticity, and H i , t is the number of hours worked. d t is a preference shock that follows 

d t = (1 − ρd ) d + ρd d t−1 + εd,t , 

where εd , t is i.i.d. distributed from a normal distribution with mean zero and variance σ 2 
d 

. 

The household’s budget constraint is 

P t C t + P t I t + B t ≤ W i,t H i,t + R 

k 
t K t + R t−1 B t−1 + D t + A i,t , 

where R k t is the rental rate of capital, K t is the stock of capital, 19 R t−1 is the gross nominal interest rate from period t − 1

to t , and D t is the combined profit of all the intermediate-goods firms distributed equally to each household. I assume that

households buy securities, whose payoffs are contingent on whether they can reoptimize their wage. 20 A i , t denotes the net

cash inflow from participating in state-contingent security markets at time t . 

As in Christiano et al. (2005) , I add an investment adjustment cost to the capital accumulation equation described above:

K t = (1 − δt ) K t−1 + μt 

(
1 − S 

(
I t−1 

I t−2 

))
I t−1 , (8)

where 

S 

(
I t−1 

I t−2 

)
= 

κ

2 

(
I t−1 

I t−2 

− 1 

)2 

, 

with κ > 0. 21 Other components of the capital accumulation, like the stochastic process of shocks or the informational

structure, are exactly the same as described in the previous section. 

3.2.4. The employment sector and wage setting 

In each period t , a perfectly competitive representative employment agency hires labor from households to produce an

aggregate labor service, H t , using technology 

H t = 

[∫ 1 

0 

H 

θw −1 
θw 

i,t 
di 

] θw 
θw −1 

, 

where H i , t denotes the time t input of labor service from household i and θw 

controls the price elasticity of demand for

each household’s labor service. The agency sells the aggregated labor input to the intermediate firms for a nominal price of

W t per unit. The demand function for the labor service of household i is 

H i,t = 

(
W i,t 

W t 

)−θw 

H t , 

where W i , t denotes the nominal wage rate of the labor service of household i . W t is related to W i , t via the relationship 

W t = 

[∫ 1 

0 

W 

1 −θw 

i,t 
di 

] 1 
1 −θw 

. 

Households face a Calvo-type wage-setting friction: In each period t , a household can reoptimize its nominal wage with

probability (1 − ξw 

) . Households that cannot reoptimize index their wage according to the steady-state inflation rate, π . 
19 Note that K t is the capital stock after the period t shock to the capital accumulation equation is realized. 
20 The existence of state-contingent securities ensures that households are homogeneous with respect to consumption and asset holdings, even though 

they are heterogeneous with respect to the wage rate and hours because of the idiosyncratic nature of the timing of wage reoptimization. See Christiano 

et al. (2005) . 
21 With the investment adjustment cost, the measurement Eq. (5) is rewritten as 

K t − (1 − δ) K t−1 = 

[ (
1 − S 

(
I t−1 

I t−2 

))
I t−1 0 

] [
μt 

g t 

]
+ K t−1 εδ,t . (9) 

Note that since the adjustment cost is pre-determined, we can still continue to use the Kalman filter. 
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3.2.5. The central bank, resource constraint, and equilibrium 

The central bank follows a Taylor rule with interest-rate smoothing: 

R t 

R 

= 

(
R t−1 

R 

)ρR 
{(

πt 

π

)φπ
(

Y t 

Y t−1 

)φY 
}1 −ρR 

exp (εR,t ) , 

where R is the steady-state level of the nominal interest rate, ρR is the persistence of the rule, and φπ and φY are the

size of the policy response to the deviation of inflation and output growth from their steady states, respectively. εR , t is a

monetary policy shock and is i.i.d. distributed from a normal distribution with mean zero and variance σ 2 
R 

. 

Finally, the aggregate resource constraint is C t + I t = Y t . I employ a standard sequential market equilibrium concept and

hence its formal definition is omitted. 

4. Model solution and parameterization 

I follow Fernández-Villaverde et al. (2011) and solve the model using a third-order perturbation method around its deter-

ministic steady state. 22 I use perturbation because the model has many state variables and it is the only method that delivers

an accurate solution in a reasonable amount of time ( Aruoba et al. 2006 ). The third-order approximation is necessary be-

cause my purpose is to analyze the direct impact of endogenous changes in perceived uncertainty about the efficiency of

investment. In a standard first-order approximation, changes in uncertainty play no role since the decision rules of agents

are forced to follow a certainty equivalence principle. In the second-order approximation, changes in uncertainty only appear

in the decision rules as cross-product terms with other state variables. Only in the third-order approximation do changes in

uncertainty show up as an independent term. 

The parameterization of the model is done in two steps. In the first step, I fix several parameter values following micro

evidence or estimates found in other papers. In the second step, I estimate the remaining parameters using the simulated

method of moments (SMM) to match data moments. The first step reduces the number of parameters to be estimated and

thus sharpens the exercise in the second step. 

The discount factor, β , is set so that the model steady-state interest rate implied by the Euler equation matches that of

the data. The capital share is set to 0.3. δ = 0 . 02 implies an annual depreciation rate of 8%. The elasticity of goods demand

θp = 21 and labor demand θw 

= 21 are consistent with previous estimates, for example, Altig et al. (2011) . 

I set σ = 2 and the habit persistence parameter is set to b = 0 . 75 . The value of σ is close to the estimated value in Smets

and Wouters (2007) and used in, for example, Fernández-Villaverde et al. (2015) . The degree of habit persistence is in line

with the estimates found in Smets and Wouters (2007) and Justiniano et al. (2010) . As emphasized in Boldrin et al. (2001) ,

a strong habit persistence parameter helps to account for various asset pricing puzzles. Chetty et al. (2011) suggest a Frisch

elasticity of labor supply of 0.5 for a macro model that does not distinguish between intensive and extensive margins. This

leads to η = 2 . 

The Calvo price and wage parameters imply an average duration of one year. As found in Smets and Wouters (2007) and

Justiniano et al. (2010) , prices and wages need to be sufficiently sticky in order to account for the inflation and wage dy-

namics in the data. Turning to the monetary policy parameter, I match the steady-state inflation rate to its historical mean.

The Taylor rule coefficients feature inertia with a strong response to inflation and a weak response to output growth ( Levin

et al. 2006, Smets and Wouters 2007 , and Justiniano et al. 2010 ). The persistence coefficients for the technology shock and

preference shock are set to ρz = 0 . 95 ( Cooley and Prescott 1995 ) and ρd = 0 . 22 ( Smets and Wouters 2007 ), respectively. 

To determine the values of other parameters, I choose them so that the moments simulated from the model matches the

selected moments in the data. 23 Specifically, let θ = { κ, ρμ, ρg , σz , σd , σR , σμ, σg , σδ} denote a vector that collects 9 parame-

ters to be estimated. ψ 0 is a vector that collects 9 data moments which not only include standard macro moments but also

moments from the survey data: 

• Macroeconomic variables : 

Standard deviations of output, investment, and consumption. 

Correlations of investment with respect to output. 

Autocorrelation of output, investment, and consumption. 
22 The computation is carried out with Dynare ( http://www.dynare.org/) . 
23 To simulate the model, I use the pruning procedure as described in Kim et al. (2008) and Den Haan and De Wind (2012) . I compute a total of 200 

replications of 272 period simulations. I throw away the initial 100 periods, which leaves me with the sample size of the US data (172 periods). For 

each sample I compute the business cycle moments and then take medians across 200 replications. I checked that the results are not driven by explosive 

behavior. 

http://www.dynare.org/)
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Table 1 

Parameters and targets. 

Description Value Comments/Targets 

Technology and preference 

β Discount factor 0.9948 Historical mean of interest rate 

θ p Goods demand elasticity 21 5% price markup ( Altig et al. 2011 ) 

θw Labor demand elasticity 21 5% wage markup ( Altig et al. 2011 ) 

α Capital share 0.3 30% capital share of income 

δ Depreciation rate 0.02 8% annual depreciation 

σ Preference parameter 2 Smets and Wouters (2007) 

η Inverse Frisch elasticity 2 Frisch elasticity = 0.5 ( Chetty et al. 2011 ) 

b Habit persistence 0.75 Smets and Wouters (2007) 

κ Investment adj. cost 0.37 Estimated using SMM 

ξ p Calvo price 0.75 Duration of price 4 quarters 

ξw Calvo wage 0.75 Duration of wage 4 quarters 

Monetary policy 

π SS inflation rate 1.0095 Historical mean of inflation rate 

ρR Taylor rule smoothing 0.9 Smets and Wouters (2007) 

φπ Taylor rule inflation 2 Smets and Wouters (2007) 

φY Taylor rule output growth 0.1 Smets and Wouters (2007) 

Shock process 

ρz Technology 0.95 Cooley and Prescott (1995) 

ρd Preference 0.22 Smets and Wouters (2007) 

ρμ Investment level 0.91 Estimated using SMM 

ρg Investment growth 0.85 Estimated using SMM 

100 σ z Technology 0.20 Estimated using SMM 

100 σ d Preference 4.2 Estimated using SMM 

100 σ R Monetary policy 0.006 Estimated using SMM 

100 σμ Investment level 0.25 Estimated using SMM 

100 σ g Investment growth 0.72 Estimated using SMM 

100 σ δ Depreciation 0.014 Estimated using SMM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Forecast errors from the Survey of Professional Forecasters : 

1st-order autocorrelation and mean size of forecast errors on nominal GDP growth. 

The parameters θ are jointly selected to minimize the quadratic loss function: 

L = (ψ(θ ) − ψ 0 ) 
′ (ψ(θ ) − ψ 0 ) , 

where ψ( θ ) is a vector that collects simulated moments from the model. Table 1 summarizes the estimated parameter

values along with other pre-determined parameters. 

The identification of the standard deviation of the depreciation shock σ δ needs further discussion. The parameter is

important because it determines the strength of information frictions. When σ δ is very small, the learning problem becomes

trivial. When σ δ is very large, agents learn little about the aggregate state. Thus in both cases, changes in the level of

investment have a negligible effect on the level of uncertainty. I include data moments on forecast errors in the Survey of

Professional Forecasters data in the SMM estimation to pin down σ δ . 24 The first row in Table 2 reports statistical properties

of the one-quarter-ahead median forecast errors on nominal GDP growth rate. 25 The second column shows that the forecast

errors of GDP growth are positively autocorrelated. The third column shows the mean size of forecast errors (i.e., forecast

precision). To illustrate how survey data moments facilitate identification, I report the model predictions of the forecast

errors for various values of σ δ . 26 First, note that for all values of σ δ reported, the autocorrelations are positive. This is

due to the relatively high persistence parameter of the investment growth shock, ρg . The forecast errors are autocorrelated

because agents only gradually realize the change in growth rate in response to an innovation to g t . As σ δ increases, the

autocorrelation in general decreases because of the additional noise in the filtering problem. 27 On the other hand, the size of

the error increases with σ δ simply because the information friction becomes more severe. While it is important to note that

σ δ is jointly estimated with other parameters and hence standard macro moments in the SMM also influence the estimation

of σ δ , Table 2 highlights the advantage of incorporating survey data moments in inferring the degree of information frictions.
24 A similar calibration/estimation strategy has been used in, for example, Eusepi and Preston (2011) and Görtz and Tsoukalas (2013) . 
25 I choose the nominal GDP growth rate because this is the longest forecast series available from the survey. Also, the forecasts do not appear to be 

biased because the time-series average of the forecast errors is very close to zero. 
26 For the computation of the numbers reported in this table, I only change the value of σ δ and fix other parameters at the benchmark parameterize 

reported in Table 1 . 
27 When σ δ is small, the autocorrelation actually increases as σ δ increases. For example, as shown in Table 2 , the autocorrelation slightly increases from 

0.17 to 0.18 when σ δ increases from 100 σδ = 0 to 100 σδ = 0 . 015 . This is because the effect of information friction, which causes agents to gradually learn 

about the change in the level of μt , offset the effect of an increase of the i.i.d. shock. 
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Table 2 

Properties of forecast errors and output amplification for different values of σ δ . 

Output 

Cor r (F E 1 Q t , F E 1 Q 
t−1 

) Mean (| F E 1 Q t | ) amplification 

Data 0.17 0.55 

Model 

10 0 σδ = 0 . 0 0 0 0.17 0.47 1.00 

10 0 σδ = 0 . 0 05 0.18 0.48 1.11 

100 σδ = 0 . 014 0.17 0.55 1.16 

100 σδ = 0 . 025 0.14 0.67 1.23 

100 σδ = 0 . 050 0.13 0.89 1.15 

Notes : The forecast errors are multiplied by 100 to express them in percentage terms. The data statistics are calculated 

using the final data vintage. As a robustness check, I calculated the statistics using alternative data vintages and found 

that they are similar. For example, (Cor r (F E 1 Q t , F E 1 Q 
t−1 

) , Mean (| F E 1 Q t | )) for the first, the third, and the fifth vintages are 

(0.23, 0.47), (0.18, 0.52), and (0.20, 0.54), respectively. 

Table 3 

Business cycle moments. 

Std. Corr ( Y t , X t ) AR(1) 

Data 

Output 1.61 ∗ 1.00 0.87 ∗

Investment 6.31 ∗ 0.94 ∗ 0.87 ∗

Consumption 0.93 ∗ 0.84 0.87 ∗

Hours 1.99 0.88 0.92 

Real wage 0.84 0.07 0.76 

Inflation 0.29 0.18 0.48 

Interest rate 0.41 0.34 0.75 

Model 

Output 1.61 ∗ 1.00 0.89 ∗

Investment 6.32 ∗ 0.90 ∗ 0.92 ∗

Consumption 0.91 ∗ 0.59 0.81 ∗

Hours 2.26 0.98 0.88 

Real wage 1.07 -0.40 0.89 

Inflation 0.46 0.09 0.68 

Interest rate 0.26 -0.32 0.93 

Notes : Both data and model moments are in logs, HP-filtered ( λ = 1600 ), and multiplied by 100 to express them in 

percentage terms. Moments with asterisks denote those used in the SMM estimation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As a preliminary diagnosis of the model’s performance, I compare the business cycle moments from the data and the

model in Table 3 . The model matches the data reasonably well, even for moments that are not explicitly targeted in the

estimation. 

For robustness, I perform two additional exercises. First, as in Van Nieuwerburgh and Veldkamp (2006) , my model gen-

erates asymmetric business cycles. When the economy passes the peak of a boom, agents are able to precisely detect the

slowdown, leading to an abrupt crash. At the end of the recession, agents’ estimates about the extent of recovery are noisy,

slowing reactions and delaying booms. Under the baseline parameterization, however, the model underpredicts the asym-

metry in the data. For example, the skewnesses of output and investment in the model are −0.07 and −0.07, respectively,

while in the data they are −0.38 and −0.83, respectively. Thus, it is interesting to see how the results change when the

model is parameterized in order to match the data closer in terms of business cycle asymmetry. When I present the size

of business cycle amplification below, I also present the size of amplification when the skewnesses of output and invest-

ment, instead of the Survey of Professional Forecasters data, are used in the SMM estimation. Second, I consider a persistent

depreciation shock as in (2) . In this specification, I have a new parameter ρδ . To facilitate comparison with the baseline

specification of an i.i.d. depreciation shock, I jointly estimate ρδ and rest of the 9 parameters using the 9 moments used in

the original estimation. 

5. Results 

In this section, I present the results. First, by comparing impulse responses and business cycle moments, I quantify the

size of the uncertainty multiplier. Then, I extensively discuss why countercyclical uncertainty leads to an amplification of

business cycles and examine how the size of amplification depend on the structure of the economy. Finally, I examine the

sensitivity of the size of the multiplier to different parameter values for the shock processes. 
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Table 4 

The size of the amplification. 

Amplification 

σ With multiplier / σ Without multiplier 

Baseline Alternative Persistent 

parameterization parameterization depreciation 

Output 1.16 1.20 1.16 

Investment 1.25 1.29 1.20 

Consumption 1.05 1.05 1.05 

Hours 1.24 1.24 1.18 

Real wage 1.10 1.10 1.14 

Inflation 1.03 1.03 1.06 

Nominal interest 1.04 1.05 1.04 

Notes : Both data and model moments are in logs and HP-filtered ( λ = 1600 ). 

“Baseline parametrization” refers to results based on the SMM using survey 

data, “Alternative parametrization” refers to results based on the SMM using 

the skewnesses of output and investment, and “Persistent depreciation” refers 

to the model with a persistent depreciation shock. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1. The size of the uncertainty multiplier 

I divide the presentation of the main results into two parts. First, I use impulse responses to explain the basic mechanism

of the uncertainty multiplier. Second, I compute business cycle moments and measure the size of the multiplier. 

5.1.1. Impulse response analysis 

Before examining the impulse responses, I need to consider how to measure the effects of endogenous changes in per-

ceived uncertainty about the efficiency of investment. One potential way is to compare the baseline model with a version

of the model without any information friction (i.e., agents know the true value of the shocks). However, this approach is

problematic since it confounds the effects of changes in the variance of the agents’ estimates (which is the main focus of the

paper) with the effects of changes in the mean of the estimates. Therefore, I consider a version of the model where agents’

perception of the variance of the estimates is held constant but they still face information frictions. This way, I can precisely

quantify the contribution of fluctuations in uncertainty to business cycle dynamics. 

Recall that from the perspective of the agent at the end of period t − 1 , the capital accumulation equation can be rewrit-

ten as follows: 

K t = (1 − δt ) K t−1 + ( ̃  μt | t −1 + u t ) I t−1 , (10)

where u t is normally distributed with mean zero and variance σ 2 
u,t . In the baseline model featuring the uncertainty multi-

plier, σ 2 
u,t is given by 

σ 2 
u,t = ρ2 

μ�11 
t−1 + 2 ρμ�12 

t−1 + �22 
t−1 + σ 2 

μ. 

I shut down the uncertainty multiplier by fixing expectations over σ 2 
u,t at its steady-state level: 

σ 2 
u,t = ρ2 

μ�11 
ss + 2 ρμ�12 

ss + �22 
ss + σ 2 

μ, 

where �11 
ss , �

12 
ss , and �22 

ss are the steady-state levels of �11 
t , �12 

t , and �22 
t . Intuitively, agents act as if ex-ante uncertainty

is constant, even though the size of the ex-post forecast error about the marginal efficiency of investment is time-varying. 

I examine the impulse responses to a one-standard-deviation technology shock and a monetary shock. 28 Fig. 2 shows that

the output increase in response to a positive technology is stronger when the uncertainty multiplier is present (blue solid

line) than without (black dashed line). This is because in the baseline model agents perceive a decline in uncertainty about

the future realization of effective capital (increase in σ u , t ). The decline in uncertainty is due to an increase in investment

originated from a positive technology shock. This decline in uncertainty contributes to the additional increase in output and

other real variables compared to the case where the uncertainty multiplier is turned off ( σ u , t is held constant). For nom-

inal variables like inflation and the interest rate, the amplification is negligible. Fig. 3 similarly shows that the uncertainty

multiplier magnifies the effect of a monetary policy shock on economic activities. 

5.1.2. Business cycle moments 

I measure the size of the uncertainty multiplier by computing the business cycle moments with and without the multi-

plier. Table 4 compares the standard deviations of output and other variables. First, consider the benchmark parameterization

(labeled “Baseline parameterization”). The sizes of the amplification are nontrivial. In particular, the standard deviation of
28 Impulse responses to other shocks are available upon request. 
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Fig. 2. Impulse response to a technology shock. 

Notes : Blue solid lines are the baseline and black dashed lines are when the uncertainty multiplier is turned off. Since third-order approximations move 

the ergodic distribution of endogenous variables away from the steady state ( Fernández-Villaverde et al. 2011 ), I report the impulse responses in terms of 

percent deviation from the ergodic mean. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 

 

 

 

 

 

 

 

output is 1.16 times larger with the multiplier. 29 The uncertainty multiplier magnifies other real variables like investment

and hours by a similar amount. 30 Consistent with the findings from the impulse response analysis, for inflation and the

nominal interest rate the amplification is negligible. Next, consider the sizes of amplification when the skewnesses of out-

put and investment are used in the SMM estimation (labeled “Alternative parameterization”). The sizes of amplification are

larger than the baseline case. For example, the output amplification is 20% while it is 16% in the baseline parameteriza-

tion. Intuitively, the amplification is larger because the business cycle asymmetry and hence fluctuations in uncertainty are

larger when skewnesses are used in the SMM. 31 Finally, consider the model with a persistent depreciation shock (labeled
29 The baseline numbers are derived from the HP-filtered ( λ = 1600 ) moments. The multiplier is of similar magnitude when other detrending methods 

are used. For example, when I use linearly detrended moments, the uncertainty multiplier for output is 1.27. 
30 The amplification of consumption is smaller than other real variables because I used a flexible method (HP filter) to detrend the data. When I use 

linearly detrended moments, the uncertainty multipliers for investment, consumption, and hours are 1.27, 1.26, and 1.28, respectively. 
31 The model, however, still underpredicts the asymmetry in the data. The skewnesses of output and investment in the model are −0.10 and −0.23, 

respectively, while in the data they are −0.38 and −0.83, respectively. Other business cycle moments generated by the model are similar to those under 

the baseline parameterization and are available upon request. 
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Fig. 3. Impulse response to a monetary policy shock. 

Notes : Blue solid lines are the baseline and black dashed lines are when the uncertainty multiplier is turned off. Since third-order approximations move 

the ergodic distribution of endogenous variables away from the steady state ( Fernández-Villaverde et al. 2011 ), I report the impulse responses in terms of 

percent deviation from the ergodic mean. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.). 

 

 

 

 

 

 

 

 

 

“Persistent depreciation”). The sizes of the amplification are very similar to the baseline model with an i.i.d. depreciation

shock. 32 

Table 2 reports the output uncertainty multiplier for various parameterizations of the standard deviation of the deprecia-

tion shock, σ δ , holding other parameters at the baseline parameterization. First, note that the relationship between the size

of σ δ and the multiplier is non-monotonic for the reason discussed in the previous section. Second, for a reasonable range

of parameterizations of σ δ , the size of the multiplier is similar to the baseline value. For example, consider 100 σδ = 0 . 050 .

While this parameterization implies that the autocorrelation is too low and the forecast errors are too large, the uncertainty

multiplier for output is 1.15. 

5.2. Inspecting the mechanism 

In this section, I discuss in detail how the size of the uncertainty multiplier depends on the structure of the economy

and why countercyclical uncertainty leads to amplification of business cycles. 

The benchmark model features several real and nominal rigidities that are absent in a basic real business cycle model.

Table 5 reports the uncertainty multiplier for output under various combinations of frictions. In each experiment, I rescale all
32 The estimated value of the persistence of the depreciation shock, ρδ , is 0.29. The values for other parameters are similar to the estimated values in the 

baseline model. 
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Table 5 

The role of real and nominal rigidities. 

Consump. Investment Sticky Sticky Output 

habit adj. cost price wage amplification 

� � � � 1.16 

� � � 1.06 

� � � 1.01 

� � 1.00 

� � � 1.06 

� � � 1.07 

� � 1.05 

1.00 

Notes : Both data and model moments are in logs and HP-filtered 

( λ = 1600 ). For each specification, I scale ( σ z , σ d , σ R , σμ , σ g , σ δ ) 

proportionally to replicate the standard deviation of output in the 

data ( σY = 1 . 61 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

shocks proportionally to generate the standard deviation of output that is in line with the data. I highlight two observations.

First, nominal rigidities are crucial for generating sizable multipliers. The output uncertainty multiplier is 1.06 without sticky

prices and 1.01 without sticky wages. Second, frictions on the real side of the economy also matter. The output uncertainty

multiplier is 1.06 without consumption habit and 1.07 without the investment adjustment cost. 

Why are nominal rigidities essential for amplification? To answer this question, I review the argument made by Basu

and Bundick (2016) and Fernández-Villaverde et al. (2015) by comparing impulse responses to an exogenous shock to un-

certainty with and without nominal rigidities. 33 The responses to an uncertainty shock are useful because they allow me

to study the effects of nominal rigidities on the transmission mechanism while holding the uncertainty process identical

across the two economies. Fig. 4 shows that, when both prices and wages are flexible, the effect of an uncertainty shock to

economic activity is quantitatively negligible. When uncertainty increases, households cut consumption in order to increase

their savings. The fall in consumption, however, induces households to increase their labor supply due to the intratemporal

first-order condition 

34 and as a result, leads to an increase in output. Finally, the fall in consumption and the increase in

savings drive down the real interest rate. Fig. 5 shows that, with nominal rigidities, an increase in uncertainty leads to a

sizable decline in output, investment, consumption, and hours. As in the case of flexible prices, an increase in uncertainty

induces households to reduce consumption and to save more. Even though households wish to increase their labor supply,

hours fall in equilibrium for two reasons. First, with sticky wages, wages cannot adjust to accommodate more labor supply.

Second, with sticky prices, the decline in aggregate demand leads to an increase in firms’ markups and thus firms demand

less labor. On the saving side, the physical capital becomes a worse hedge for aggregate shocks because the return on capital

is subject to more uncertainty. Moreover, the increase in markups reduces firms’ capital demand. These two factors cause

investment to drop, which further reduces aggregate demand. The overall outcome is that the decline in aggregate demand

and an increase in markups reinforce each other and output drops substantially. 

An interesting feature of the baseline model is that, compared to quantities such as output and consumption, nominal

variables such as the inflation and the nominal interest rate do not move much. The inflation is not very responsive simply

because prices are sticky and most firms cannot adjust their prices in the short run. The nominal interest rate, in turn,

does not move much because the Taylor rule features inertia and reacts to the inflation. Since the nominal rate declines

more than the inflation, the real interest rate also falls but only by a small amount. Another way to understand the modest

movement in the real rate is as follows. On one hand, the fall in investment raises the marginal return on capital. On the

other hand, the increase in markups reduce the return on capital. The latter effect dominates on net and the real return on

capital falls slightly, which translates into a small decline in the real rate. 

That nominal rigidities are crucial for amplification implies that the size of the uncertainty multiplier also depends on

the monetary policy rule in place. 35 To illustrate this, in Fig. 5 I plot the responses to an uncertainty shock when the

central bank responds less aggressively to inflation ( φπ = 1 . 9 instead of φπ = 2 , green circled lines) and more aggressively

to inflation ( φπ = 2 . 1 instead of φπ = 2 , red dots). The figure shows that the more accommodative the monetary policy rule

(lower φπ ), the larger the effects of the uncertainty shock. The intuition is simple. When the nominal interest rate responds

less (more) aggressively to inflation, the real interest rate decrease in response to an increase in uncertainty is smaller

(larger). When φπ = 1 . 9 and φπ = 2 . 1 , the uncertainty multiplier for output is 1.19 and 1.09, respectively. Similar results

hold when I change the output growth coefficient in the monetary policy rule; the responses of endogenous variables to
33 I simulate responses of a shock to the variance σ 2 
u,t of the innovation to the capital accumulation Eq. (10) . I assume that σ 2 

u,t follows ln σ 2 
u,t = 

0 . 95 ln σ 2 
u,t−1 + εσ,t and consider a 30% innovation to εσ , t . 

34 The argument is originally made by Barro and King (1984) , who pointed out that in flexible-price models featuring time-separable preferences, con- 

sumption and hours move in the opposite direction in response to a non-technology shock. 
35 In a related analysis, Born and Pfeifer (2014) find that the effects of policy uncertainty shocks depend on the parameterization of the monetary policy 

rule. 
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Fig. 4. Impulse response to an uncertainty shock: no nominal rigidities. 

Notes : The figure shows the impulse response (in terms of percent deviation from the ergodic mean) to an uncertainty shock when both sticky prices and 

wages are turned off. 

 

 

 

 

 

 

 

 

 

 

 

 

changes in uncertainty are larger when φY is smaller. When φY = 0 . 05 and φY = 0 . 15 , the uncertainty multiplier for output

is 1.23 and 1.15, respectively. 

We now discuss why real rigidities matter for amplification. Fig. 6 shows that the effect of an uncertainty shock is larger

without real rigidities (green circled lines), simply because there is less friction and hence the economy is more elastic to

shocks. Why then, is the uncertainty multiplier smaller without real rigidities? Recall that when I calculate the uncertainty

multiplier under various combinations of frictions in Table 5 , I rescale the size of shocks so that the model replicates the

output standard deviation in the data. When the real rigidities are turned off, output and other economic activities respond

very strongly to aggregate shocks and hence the sizes of the shocks, including the investment shock, have to be quite small

in order to match the data. In turn, this implies that uncertainty about the marginal efficiency of investment is also small

to begin with, leading to small output amplification. 

To summarize, nominal rigidities and countercyclical markups are important for magnifying the effects of endogenous

uncertainty. This finding echoes the argument made by previous papers that study uncertainty shocks in a sticky-price

model. Importantly, real rigidities also increase the size of the amplification because the rigidities affect the inference about

the underlying shock processes. This is in sharp contrast to the case of uncertainty shocks, where real rigidities reduce the

overall effect. 
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Fig. 5. Impulse response to an uncertainty shock: baseline model. 

Notes : The blue solid lines are the impulse response (in terms of percent deviation from the ergodic mean) to an uncertainty shock in the baseline model 

( φπ = 2 ). The green circled lines are when φπ = 1 . 9 and the red dots are when φπ = 2 . 1 . (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

Table 6 

The uncertainty multiplier is increasing in the relative size of the growth shock. 

Output 

Cor r (F E 1 Q t , F E 1 Q 
t−1 

) Mean (| F E 1 Q t | ) amplification 

Data 0.17 0.55 

Model 

σμ/σg = 1 . 00 0.13 0.66 1.159 

σμ/σg = 0 . 35 0.17 0.55 1.165 

σμ/σg = 0 . 00 0.18 0.53 1.199 

Notes : Both data and model moments are in logs and HP-filtered ( λ = 1600 ). σμ and σ g are scaled so that the standard deviation of output is the same as 

that in the benchmark specification ( σY = 1 . 61 ). 

 

 

 

5.3. Changing the parameters of the shock processes 

I consider the effects of changing the parameters of the shock processes from the benchmark calibration. The exercise

provides additional insights regarding determinants of the size of the uncertainty multiplier. 

Table 6 reports the uncertainty multiplier for output under different parameterizations of the standard deviation of the

investment shock σμ and the growth shock σ g . I change the ratio of the standard deviations, σμ/ σ g , from the benchmark
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Fig. 6. Impulse response to an uncertainty shock: with and without real rigidities. 

Notes : The blue solid lines are the impulse response (in terms of percent deviation from the ergodic mean) to an uncertainty shock in the baseline model 

and the green circled lines are the responses when real rigidities (consumption habit and investment adjustment cost) are turned off. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.). 

 

 

 

 

 

 

 

 

 

 

calibration ( σμ/σg = 0 . 35 ) while keeping the standard deviation of output constant. The multiplier is increasing in the rela-

tive size of the growth shock. Intuitively, agents respond more to changes in uncertainty about the expected trend growth

than to those about the fluctuation around the trend. The uncertainty multiplier is also increasing in the absolute size of

the shocks. This can be seen in Table 7 , where I scale the standard deviations of shocks ( σ z , σ d , σ R , σμ, σ g , and σ δ) pro-

portionally from the benchmark calibration. The reason is that the fluctuation in uncertainty becomes more important to

agents’ decision making as the volatility of shocks becomes larger. 

The results in this subsection have an interesting implication for emerging market economies. As shown in Aguiar and

Gopinath (2007) , these economies feature more volatile business cycles that could be well characterized by fluctuations in

expected growth rates. 36 This suggests that the uncertainty multiplier may be much larger in emerging markets than in the

U.S. 

6. Empirical evidence 

In this section, I confront the model with data regarding uncertainty and economic activities. First, I ask how much of the

fluctuations in uncertainty that we observe in the data can be generated by the model. Second, I ask whether the model can
36 See also Boz et al. (2011) , who extend Aguiar and Gopinath (2007) ’s analysis by incorporating a learning problem. 
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Table 7 

The uncertainty multiplier is increasing in the size of shocks. 

Output Output 

standard dev. amplification 

Data 1.61 

Model 

σ × 0.9 1.28 1.13 

σ × 1.0 1.61 1.16 

σ × 1.1 2.43 1.33 

Notes : Both data and model moments are in logs and HP-filtered ( λ = 1600 ). I 

define σ ≡ ( σ z , σ d , σ R , σμ , σ g , σ δ ). 

Table 8 

Log-standard deviations of uncertainty in the data and the model. 

Data Model 

SPF 14.6 6.3 

VIX 33.4 7.2 

Notes : Both data and model moments are in logs and multiplied by 100 to ex- 

press them in percentage terms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

replicate the VAR relationship between output and uncertainty in the data. Third, I conduct Granger causality tests between

output and uncertainty on both data and the model. 

Table 8 compares the standard deviations of uncertainty in the data and in the model. To measure uncertainty from the

data, I use probabilistic forecasts reported in the Survey of Professional Forecasters (SPF). This survey asks each forecaster

for a subjective probability density of the annual percentage change in real GDP. Following the standard in the literature

( Zarnowitz and Lambros 1987 and D’Amico and Orphanides 2008 ), I take the average across the standard deviations of those

probability densities for each forecaster. The sample period is 1986:Q2–2011:Q4. Appendix A provides more details regarding

the construction on the dataset. My model generates the standard deviation of 6.3% versus 14.6% in the data. 37 Intuitively,

the model underpredicts the standard deviation because in the model fluctuations in uncertainty are driven mainly by

fluctuations in investment while in the data the standard deviation of uncertainty is larger than that of investment by

more than two-fold. As an alternative way to measure changes in uncertainty, I use the option-based expected stock market

volatility index, the VIX. The sample period is 1990:Q1–2011:Q4. My model generates the standard deviation of 7.2% versus

33.4% in the data. 38 That the model can account for a smaller fraction of the data for the VIX than for the SPF may be due to

the fact that the fluctuations in VIX reflect variations not only in uncertainty but also in risk aversion ( Bekaert et al. 2013 ).

Since the focus of my paper is on time-varying uncertainty, I use the SPF-based measure of uncertainty for the empirical

analysis below. 

As a second empirical test of the model, I characterize the relationship between real GDP and uncertainty with a general-

ized impulse response analysis ( Pesaran and Lambros 1998 ) from a bivariate VAR with four lags. 39 The generalized impulse

response is appealing in this context because, in contrast to a standard recursive VAR, the results are invariant to the or-

dering of variables. I emphasize that the purpose of this exercise is to look for a statistical relationship between output and

uncertainty and hence no causal inference is drawn from the impulse responses. Fig. 7 shows that, in the data, an increase

in uncertainty is associated with a gradual decline in output. On the other hand, an increase in output is associated with

a decline in uncertainty. Hence, the VAR responses indicate a clear negative relationship between output and uncertainty.

The figure also shows that running a VAR on the artificial data from the model generates impulse responses that are in

line with the actual data. In the model, the negative relationship between output and uncertainty is due to the endogenous

movement in perceived uncertainty about the efficiency of investment and its feedback to real economic activity. Note that

the model replicates well the gradual responses of the two variables. This is because uncertainty is driven by investment,

which exhibits hump-shaped dynamics, and this uncertainty in turn induces gradual reduction of output. 

Finally, I compare the stochastic properties of the data and the model through the lens of Granger causality tests. 40 I

estimate bivariate VARs (with two, three, and four lags) containing uncertainty and output and test (a) whether output

Granger-causes (i.e., helps forecast) uncertainty and (b) whether uncertainty Granger-causes output. 41 Table 9 reports the

p-values for the F-statistics of the Granger causality tests. The results of the model are in line with the data. For both data

and the model, the hypothesis that output does not Granger-cause uncertainty are rejected at the 5% level for all the lag
37 In the model, I define uncertainty as the standard deviation of the density forecast (conditional on the agents’ information sets) of the annual percent- 

age change in output: Std t (�Y t+4 ) . 
38 The model counterpart is the expected conditional standard deviation of the return on capital: Std t ( ̃ R k t+1 ) . 
39 Both variables are logged with linear trends. 
40 This analysis is inspired by Bachmann et al. (2016) , who run Granger causality tests on firm-level risk and a recession indicator using German data. 
41 As in the VAR analysis, both variables are logged with linear trends. 
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Notes : The shaded area represents ± one-standard-deviation bootstrap confidence bands. 

Table 9 

Uncertainty and output: Granger causality tests. 

Output Granger-causes uncertainty? Uncertainty Granger-causes output? 

Data Model Data Model 

VAR(2) 0.01 0.00 0.24 0.10 

VAR(3) 0.01 0.00 0.67 0.10 

VAR(4) 0.02 0.00 0.58 0.11 

Notes : The table reports the p-values for the F-statistics of the Granger causality tests 

between uncertainty and output. I try VARs with lag lengths of two, three, and four. 

Higher p-values imply that the hypothesis of no Granger-causality between two vari- 

ables cannot be rejected. 

 

 

 

 

 

 

 

 

 

specifications (left panel). On the other hand, the hypothesis that uncertainty does not Granger-cause output cannot be

rejected at the 10% level for both data and the model (right panel). Intuitively, in my model output has an explanatory

power for the future level of uncertainty because uncertainty is driven by changes in economic activity. Since there is no

exogenous impulse to uncertainty that moves economic activity, once lagged output is controlled for, lagged uncertainty is

not useful in forecasting the level of output. 42 

7. Conclusion 

This paper constructed a business cycle model where agents have imperfect information about the state of the economy

and have to learn it through investment. Recessions are times of high uncertainty because agents invest less and hence

learn less about the state of the economy. The countercyclical fluctuation in aggregate uncertainty interacts with rigidities

and amplifies business cycles. 

Because the level of learning is tied to the level of investment, changes in uncertainty are large and persistent. As a

result, the size of the amplification is nontrivial; the uncertainty multiplier amplifies the standard deviation of output by

16–20%. The multiplier magnifies other real variables, such as investment and hours, by a similar amount. 
42 Note that the result that uncertainty does not Granger-cause output is not necessarily inconsistent with the VAR estimate above. Even if the coefficients 

on lagged uncertainty are not statistically different from zero, a positive innovation to uncertainty in the VAR can still lead to a decline in output through 

variations in lagged output and the contemporaneous correlation of the innovations. 
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Appendix A. Data source 

The data set spans the period 1969Q1 to 2011Q4. 43 Whenever the data set is provided in monthly frequencies, I simply

take the average to transform it into quarterly frequencies. 

Data from the National Income and Product Accounts are downloaded from the Bureau of Economic Analysis website.

Nominal GDP, nominal consumption (defined as the sum of personal consumption expenditures on nondurables and ser-

vices), and nominal investment (defined as the sum of gross private domestic investment and personal consumption ex-

penditures on durables) are divided by the civilian noninstitutional population, 44 downloaded from the Bureau of Labor

Statistics (BLS hereafter) website, to convert the variables into per capita terms. I then divide them by the GDP deflator to

convert them into real terms. 

Working hours are measured by nonfarm business hours (available on the BLS website) divided by the population. Real

wages are measured by hourly compensation in nonfarm business sectors (available on the BLS website) divided by the GDP

deflator. Inflation rates are measured by changes in the GDP deflator. I use the effective federal funds rates (downloaded

from the Federal Reserve Board website) to measure the nominal interest rates. 

To compute the forecast error statistics, I use the median forecast of nominal GDP growth rate, downloaded from the

FRB Philadelphia website. The one-period-ahead forecast error is defined as the one-period-ahead nominal GDP growth rate

forecast minus the realized nominal GDP growth rate. 

To compute uncertainty based on the subjective probability densities of the annual percentage change in real GDP by

each forecaster in the SPF, I take the average across the standard deviations of those probability densities for each fore-

caster. 45 While the survey data start from 1968:Q4, concerns regarding data consistency and missing data force me to con-

duct the analysis using the data during the period 1986:Q2–2011:Q4. 46 Finally, since the survey asks for the percentage

change in GDP between the previous and current calendar year, there is a seasonality in the forecast horizons. For example,

in the first quarter, it is a 4-quarter-ahead forecast. In the second quarter, it is a 3-quarter-ahead forecast. I eliminate this

seasonality by applying the Tramo-Seats filter. 47 

Appendix B. Countercyclical uncertainty: full derivation 

I restate agents’ Kalman-filtering problem below: [
μt 

g t 

]
= 

[
(1 − ρμ) μ

0 

]
+ 

[
ρμ 1 

0 ρg 

][
μt−1 

g t−1 

]
+ 

[
εμ,t 

εg,t 

]
, 

K t − (1 − δ) K t−1 = [ I t−1 0] 

[
μt 

g t 

]
+ K t−1 εδ,t . 

At the end of period t − 1 , agents forecast the values of { μt , g t }: 

˜ μt | t −1 = (1 − ρμ) μ + ρμ ˜ μt−1 + 

˜ g t−1 , 

˜ g t | t −1 = ρg g t−1 . 

The elements of the associated forecasting error covariance matrix, �t | t −1 , are 

�11 
t | t −1 = ρ2 

μ�11 
t−1 + 2 ρμ�12 

t−1 + �22 
t−1 + σ 2 

μ, 

�12 
t | t −1 = ρμρg �

12 
t−1 + ρg �

22 
t−1 , 

�21 
t | t −1 = �12 

t | t −1 , 

�22 
t | t −1 = ρ2 

g �
22 
t−1 + σ 2 

g . 

After observing period t realization of capital, K t , agents update their belief according to 

˜ μt = ˜ μt | t −1 + 

I t−1 �
11 
t | t −1 

I 2 
t−1 

�11 
t | t −1 

+ K 

2 
t−1 

σ 2 
δ

· { K t − (1 − δ) K t−1 − I t−1 ̃  μt−1 } , 

˜ g t = 

˜ g t | t −1 + 

I t−1 �
12 
t | t −1 

I 2 
t−1 

�11 
t | t −1 

+ K 

2 
t−1 

σ 2 
δ

· { K t − (1 − δ) K t−1 − I t−1 ̃  μt−1 } . 
43 I pick this starting date because the Survey of Professional Forecasters began around that time. 
44 Since raw population data display occasional breaks due to changes in population controls, I use an HP-filtered ( λ = 1600 ) trend instead. 
45 The survey asks each forecaster to place probabilities in bins spanning a wide range of outcomes for the percentage change in real GDP. To compute 

the individual standard deviations, I fit a normal distribution to the individual probabilities. For more details, see D’Amico and Orphanides (2008) . I have 

also tried other methods and obtained similar results. 
46 Nevertheless I conducted the analysis using the whole sample period and found similar results. 
47 Since the survey response between the current and the following year is also available, it is possible to construct uncertainty data with different 

forecast horizons. I have conducted the analysis with different forecast horizons and found similar results. 
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The elements of the forecasting error covariance matrix are given by 

�11 
t = 

[
1 −

I 2 t−1 �
11 
t | t −1 

I 2 
t−1 

�11 
t | t −1 

+ K 

2 
t−1 

σ 2 
δ

]
�11 

t | t −1 , 

�12 
t = 

[
1 −

I 2 t−1 �
11 
t | t −1 

I 2 
t−1 

�11 
t | t −1 

+ K 

2 
t−1 

σ 2 
δ

]
�12 

t | t −1 , 

�21 
t = �12 

t , 

�22 
t = �22 

t | t −1 −
I 2 t−1 (�

12 
t | t −1 

) 2 

I 2 
t−1 

�11 
t | t −1 

+ K 

2 
t−1 

σ 2 
δ

. 

Thus, the elements of �t are decreasing in 

I t−1 
K t−1 

. 

Appendix C. Capital accumulation in a decentralized equilibrium 

To implement capital accumulation and accommodate both investment-specific technology (IST) and marginal efficiency

of investment (MEI) shocks in a decentralized competitive equilibrium, we introduce perfectively competitive investment

goods producers and capital goods producers owned by the households ( Justiniano et al. 2011 ). 

Investment goods producers purchase Y I t units of final consumption goods at price P t and transform and transform them

into I t units of investment goods, which they sell to capital producers at price P I t . They choose the level of inputs Y I t to

maximize the profit 

max 
Y I t 

P I t I t − P t Y 
I 

t , 

subject to the production function 

I t = v t Y I t , 

where v t is the IST shock that follows 

v t = (1 − ρv ) v + ρv v t−1 + εv ,t , 

where εv ,t is i.i.d. distributed from a normal distribution with mean zero and variance σ 2 
v . In equilibrium, the relative price

of investment goods to consumption goods is inversely related to the IST: 

P I t 

P t 
= 

1 

v t 
. 

At the end of each period t , the capital producers purchase investment goods I t from the investment goods producers

and capital K t from households at price ˜ Q t . In period t + 1 , they build new capital K t+1 using the technology (8) . The capital

producers can observe the path of capital stock and investment but cannot observe the underlying shocks. The new capital

is sold at price Q t+1 . The profits are transferred back in a lump-sum manner each period. The capital producers choose the

inputs I t and K t to maximize their discounted sum of profits: 

max 
I t ,K t 

−λt (P I t I t + 

˜ Q t K t ) + E t 

∞ ∑ 

s =0 

βs +1 λt+ s +1 

×
[ 

Q t+ s +1 

{ 

(1 − δt+ s +1 ) K t+ s + μt+ s +1 

(
1 − S 

(
I t+ s 

I t+ s −1 

))
I t+ s 

} 

− P I t+ s +1 I t+ s +1 − ˜ Q t+ s +1 K t+ s +1 

] 
. 

The first-order conditions of this profit maximization problem yield an evolution for the expected price of capital: 

λt P 
I 
t = βE t 

[
λt+1 Q t+1 μt+1 

{ 

1 − S 

(
I t 

I t−1 

)
− S ′ 

(
I t 

I t−1 

)
I t 

I t−1 

} 

+ βλt+2 Q t+2 μt+2 S 
′ 
(

I t+1 

I t 

)(
I t+1 

I t 

)2 
]
. 

They also provide an expression for the “rental” rate of capital: 

λt ˜ Q t = βE t [(1 − δt ) λt+1 Q t+1 ] , 

which says that the price of capital at the end of period takes into account the discounting and depreciation that occur at the

beginning of the next period. Note that the price of capital, Q t , do not reveal additional information about the unobservable

shocks. This is simply because capital producers also face the filtering problem described in Section 2 in the main text. 

As in the baseline model, I parameterize the extended model in two steps. First, I fix parameters as in Table 1 . Second,

I use the SMM to estimate the parameters for the IST shock ρv and σv and the 9 parameters that were estimated in the

baseline model. In addition to the 9 moments (macro and survey data moments) that were used in the baseline model, I
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match the autocorrelation and standard deviation of the relative price of investment. 48 Including the moments of the relative

price of investment helps me identify the parameters for the IST shock. The results of the extended model are similar to the

baseline model although the sizes of the amplification are slightly smaller. For example, the output, investment, and house

amplifications are 13%, 12%, and 14%, respectively. 

Appendix D. Procyclical signal-to-noise ratio arising from aggregation 

The procyclical signal-to-noise ratio arises from aggregation of investment units with common and idiosyncratic shocks.

The argument does not require depreciation shocks and closely follows the discussion made in Van Nieuwerburgh and

Veldkamp (2006) . 

Consider an economy with many investment units, where each unit has a technology that transforms investment goods

into efficiency units of capital. The capital production is increasing in the number of investment units operating. Denote

N t as the number of investment units operating at time t . The output of each unit is the product of its own efficiency,

which has a common component μt and idiosyncratic component ηi 
t , and its input normalized to i i t = 1 . Then, aggregate

net investment is the sum of output of all the investment units: 

K t − (1 − δ) K t−1 = 

N t ∑ 

i =1 

(μt + ηi 
t ) i 

i 
t = μt N t + 

N t ∑ 

i =1 

ηi 
t 

Define the signal-to-noise ratio as Var (μt N t ) / Var ( 
∑ N t 

i =1 
ηi 

t ) . Then, as long as the correlation of idiosyncratic shocks across

investment units is less than one, the signal-to-noise ratio is increasing in the number of units operating, N t . A more detailed

proof of this argument can be found in Van Nieuwerburgh and Veldkamp (2006) . 
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