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A An Investment Model and Endogenous Predictability
In this Appendix we study a two-period investment model that illustrates the point we

made in footnote 5 regarding the endogenous predictability.
We start with the problem under RE.

max
I1

D1 +
1

1 + r
E [D2]

D1 = A1K
ν
1 − I1

D2 = A2K
ν
2 + (1− δ)K2

K2 = (1− δ)K1 + I1

where r > 0, 0 < δ < 1, 0 < ν < 1, and K1 are taken as given. At is an i.i.d. Normal process.
We can replace the constraints in the object function and derive the FOC:

1

1 + r
E
[
νA2 ((1− δ)K1 + I∗1 )ν−1 + (1− δ)

]
= 1

We obtain:

I∗1 =

[
R + δ

νE [A2]

] 1
ν−1

− (1− δ)K1

Thus, A1 is irrelevant as long as dividends are allowed to be negative.
In turn, under DE:

max
I1

D1 +
1

1 + r
Eθ [D2]

D1 = A1K
ν
1 − I1

D2 = A2K
ν
2 + (1− δ)K2

K2 = (1− δ)K1 + I1

We can replace the constraints and compute the FOC:

1

1 + r
Eθ
[
νA2 ((1− δ)K1 + I∗1 )ν−1 + (1− δ)

]
= 1

In equilibrium, under the assumption of the model, the optimal investment choice is not
stochastic. Thus, despite the non-linearity of the problem, normality is preserved. Since the
product of a normal times a constant is still a normal, we get:

(1 + θ) ν ((1− δ)K1 + I∗1 )ν−1 E [A2]− θν ((1− δ)K1 + I∗1 )ν−1 E−1 [A2] = (1 + r)− (1− δ)

Given that TFP is i.i.d., we have E [A2] = E−1 [A2]:

ν ((1− δ)K1 + I1)
ν−1 E [A2] = (1 + r)− (1− δ)
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Then

I∗1 =

[
r + δ

νE [A2]

] 1
ν−1

− (1− δ)K1

Thus, the solution is identical to the RE solution. This is because there is no revision in
expectations coming from what happens at time 1.

B Omitted Proofs
B.1 Proof of Lemma 1

Proof.

Eθt
[
Eθt+1 [Ct+1+n]

]
= Eθt [Et+1 [Ct+1+n] + θ (Et+1 [Ct+1+n]− Et+1−J [Ct+1+n])]

= Et [Et+1 [Ct+1+n] + θ (Et+1 [Ct+1+n]− Et+1−J [Ct+1+n])]

+ θ {Et [Et+1 [Ct+1+n] + θ (Et+1 [Ct+1+n]− Et+1−J [Ct+1+n])]

−Et−J [Et+1 [Ct+1+n] + θ (Et+1 [Ct+1+n]− Et+1−J [Ct+1+n])]}
= Et [Ct+1+n] + θ (Et [Ct+1+n]− Et−J [Ct+1+n])

+ θ(1 + θ) (Et [Ct+1+n]− EtEt+1−J [Ct+1+n])

The term (Et [Ct+1+n]− EtEt+1−J [Ct+1+n]) in the last line is generically zero if and only if
J = 1. Thus, Eθt

[
Eθt+1 [Ct+1+n]

]
= Eθt [Ct+1+n] if and only if J = 1.

B.2 Proof of Proposition 1

Proof. The first order conditions at time 1 are:

C1 = E1 [C2]

E1 [C2] = E1 [C3]

or, equivalently

Y1 +K0 −K1 = E1 [Y2 +K1 −K2]

E1 [Y2 +K1 −K2] = E1 [Y3 +K2]

The solution at time 1 and 2 can be obtained with backward induction or a guess-and-verify
approach. We opt for the guess-and-verify approach because since it is easy to generalize for
the infinite horizon case. We then guess that the solution assumes the following form:

K1 = αRE1 (K0 + ε1) ;K2 = αRE2 (K1 + ε2)

We then have:

K0 + ε1(1− αRE1 ) = E1

[
ε2 + αRE1 (K0 + ε1)− αRE2

(
αRE1 (K0 + ε1) + ε2

)]
E1

[
ε2 + αRE1 (K0 + ε1)− αRE2

(
αRE1 (K0 + ε1) + ε2

)]
= E1

[
ε3 + αRE2

(
αRE1 (K0 + ε1) + ε2

)]
Equating coefficients, we get

αRE1 =
2

3
, αRE2 =

1

2
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It is immediate to verify that the solution is time-consistent. The agent at time 2 solves
the problem (3.9). The first order condition at time 2 is:

C2 = E2 [C3] ,

or, equivalently
ε2 +K1 −K2 = E2 [ε3 +K2] .

We obtain:

K2 =
1

2
[K1 + ε2] = αRE2 [K1 + ε2] .

B.3 Proof of Proposition 2 and 3

Proof. For the time 1 problem, we conjecture the planned policy:

Kθ,p
1 = αθ,pK0

K0 + αθ,pε1 ε1; K
θ,p
2 = αθ,pK1

Kθ,p
1 + αθ,pε2 ε2.

We have two first-order conditions:

Y1 +K0 −Kθ,p
1 = Eθ1

[
Y2 +Kθ,p

1 −K
θ,p
2

]
(1)

Eθ1
[
Y2 +Kθ,p

1 −K
θ,p
2

]
= Eθ1

[
Y3 +Kθ,p

2

]
(2)

We first solve for the planned policy for period 2 by plugging in the conjecture into (2):

Eθ1
[
Kθ,p

1 −
(
αθ,pK1

Kθ,p
1 + αθ,pε2 ε2

)]
= Eθ1

[
αθ,pK1

Kθ,p
1 + αθ,pε2 ε2

]
Eθ1
[(

1− 2αθ,pK1

)
Kθ,p

1 − 2αθ,pε2 ε2

]
= 0

Then:

(1 + θ)
(

1− 2αθ,pK1

)
Kθ,p

1 − θE0

[(
1− 2αθ,pK1

)
Kθ,p

1

]
= 0(

1− 2αθ,pK1

) [
(1 + θ)αθ,pε1 ε1 + αθ,pK0

K0

]
= 0

Hence we have:

αθ,pK1
=

1

2

Endowed with the contingent plan for time 2, we can then solve for the time 1 problem:

Y1 +K0 −Kθ,p
1 = Eθ1

[
Y2 +Kθ,p

1 −K
θ,p
2

]
ε1 +K0 −Kθ,p

1 = (1 + θ)E1

[
Kθ,p

1 −
1

2
Kθ,p

1

]
− θE0

[
Kθ,p

1 −
1

2
Kθ,p

1

]
ε1 +K0 −Kθ,p

1 = (1 + θ)
1

2

[
αθ,pK0

K0 + αθ,pε1 ε1

]
− θ1

2
αθ,pK0

K0
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We get:

Kθ,p
1 = − (1 + θ)

1

2

[
αθ,pK0

K0 + αθ,pε1 ε1

]
+ θ

1

2
αθ,pK0

K0 + ε1 +K0

Kθ,p
1 = −1

2

[
(1 + θ)αθ,pε1 − 2

]
ε1 +

[
1− 1

2
αθ,pK0

]
K0

Matching coefficients:

αθ,pK0
=

2

3
, αθ,pε1 =

2

3 + θ

Note that when J = 1, there is no contingent plan formed at time 1 on how to react to
ε2, given that ε2 does not impact utility at time 1. It is then immediate to verify that the
plan is time consistent. The agent at time 2 inherits the capital Kθ

1 and solves (3.11). The
first order condition at time 2 is:

Cθ
2 = Eθ2

[
Cθ

3

]
.

We conjecture the solution Kθ
2(Kθ

1 , ε2) = αθK1
Kθ

1 + αθε2ε2. Then:

Y2 +Kθ
1 −Kθ

2(Kθ
1 , ε2) = E2

[
Y3 +Kθ

2(Kθ
1 , ε2)

]
+ θ

[
E2

(
Y3 +Kθ

2(Kθ
1 , ε2)

)
− E1

(
Y3 +Kθ

2(Kθ
1 , ε2)

)]
ε2 +Kθ

1 −Kθ
2(Kθ

1 , ε2) = αθK1
Kθ

1 + αθε2ε2 + θαθε2ε2

We have:
Kθ

2(Kθ
1 , ε2) = (1− αθK1

)Kθ
1 + (1− αθε2 − θα

θ
ε2

)ε2

Matching coefficients, we obtain:

αθK1
=

1

2
= αθ,pK1

, αθε2 =
1

2 + θ

B.4 Proof of Proposition 4

Proof. We first solve the planning problem at time 1. We conjecture the solution:

Kθ,p
1 = αθ,pN−1,0[K0]

N−1,0 [K0] + αθ,pK0
K0 + αθ,pε1 ε1; K

θ,p
2 = αθ,pK1

Kθ,p
1 + αθ,pε2 ε2.

where N−1,0 [K0] ≡ K0−E−1 [K0] represents the surprise in the stock of capital with respect to
the expectations formed in the past. Note that E−1 [N−1,0 [K0]] = 0. We have two first-order
conditions:

Y1 +K0 −Kθ,p
1 = Eθ1

[
Y2 +Kθ,p

1 −K
θ,p
2

]
(3)

Eθ1
[
Y2 +Kθ,p

1 −K
θ,p
2

]
= Eθ1

[
Y3 +Kθ,p

2

]
(4)

We first solve for the planned policy for period 2 by plugging in the conjecture into (4):

Eθ1
[
Kθ,p

1 −K
θ,p
2

]
= Eθ1

[
Kθ,p

2

]
Eθ1
[(

1− 2αθ,pK1

)
Kθ,p

1 − 2αθ,pε2 ε2

]
= 0
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Then:

(1 + θ)
(

1− 2αθ,pK1

)
Kθ,p

1 − θE−1
[(

1− 2αθ,pK1

)
Kθ,p

1

]
= 0(

1− 2αθ,pK1

) [
(1 + θ)

(
αθ,pK0

K0 + αθ,pε1 ε1

)
− θE−1αθ,pK0

K0

]
= 0

Hence we have:

αθ,pK1
=

1

2

Note that the planned solution for time 2 is identical to the case in which J = 1. This
is because distant memory does not affect how the agent evaluates the trade-off between
consumption at time 2 and consumption at time 3 from the point of view of time 1.

Endowed with the contingent plan for time 2, we can then solve for the time 1 problem:

ε1 +K0 −Kθ,p
1 = (1 + θ)E1

[
Kθ,p

1 −
1

2
Kθ,p

1

]
− θE−1

[
Kθ,p

1 −
1

2
Kθ,p

1

]
ε1 +K0 −Kθ,p

1 = (1 + θ)
1

2

[
αθ,pN−1,0[K0]

N−1,0 [K0] + αθ,pK0
K0 + αθ,pε1 ε1

]
− θ1

2
αθ,pK0

E−1 [K0]

ε1 +K0 −Kθ,p
1 = (1 + θ)

1

2

[
αθ,pN−1,0[K0]

N−1,0 [K0] + αθ,pε1 ε1

]
+

1

2
αθ,pK0

K0 + θ
1

2
αθ,pK0

N−1,0 [K0]

ε1 +K0 −Kθ,p
1 =

1

2

[
(1 + θ)αθ,pN−1,0[K0]

+ θαθ,pK0

]
N−1,0 [K0] + (1 + θ)

1

2
αθ,pε1 ε1 +

1

2
αθ,pK0

K0

Then:

Kθ,p
1 = −1

2

[
(1 + θ)αθ,pN−1,0[K0]

+ θαθ,pK0

]
N−1,0 [K0] +

[
1− 1

2
αθ,pK0

]
K0 −

1

2

[
(1 + θ)αθ,pε1 − 2

]
ε1

Hence we have

αθ,pK0
=

2

3
, αθ,pε1 =

2

3 + θ

and

αθ,pN−1,0[K0]
= − θ

3 + θ
αθ,pK0

= − 2θ

3 (3 + θ)

Note that even when J > 1, there is no contingent plan formed at time 1 on how to
react to ε2, given that this does not impact utility at time 1. However, with respect to the
case of recent memory, now we have an additional state variable that depends on the news
component of the inherited capital, N−1,0 [K0] . For a given level of inherited capital K0, the
larger the surprise, the lower the amount saved at time 1. This distortion increases with θ.

We now verify that the plan made at time 1 for time 2 is time inconsistent. The agent at
time 2 inherits the capital Kθ

1 and solves (3.11). The first order condition at time 2 is:

Cθ
2 = Eθ2

[
Cθ

3

]
.
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We conjecture the solution Kθ
2 = αθ

N0,1[Kθ
1 ]
N0,1

[
Kθ

1

]
+ αθK1

Kθ
1 + αθε2ε2. Then:

Y2 +Kθ
1 −Kθ

2 = E2

[
Y3 +Kθ

2

]
+ θ

[
E2

[
Y3 +Kθ

2

]
− E0

[
Y3 +Kθ

2

]]
ε2 +Kθ

1 −Kθ
2 = E2

[
αθN0,1[Kθ

1 ]
N0,1

[
Kθ

1

]
+ αθK1

Kθ
1 + αθε2ε2

]

+ θ

 E2

[
αθ
N0,1[Kθ

1 ]
N0,1

[
Kθ

1

]
+ αθK1

Kθ
1 + αθε2ε2

]
−E0

[
αθ
N0,1[Kθ

1 ]
N0,1

[
Kθ

1

]
+ αθK1

Kθ
1 + αθε2ε2

]


We get:

ε2 +Kθ
1 −Kθ

2 = αθN0,1[Kθ,p
1 ]

N0,1

[
Kθ,p

1

]
+ αθK1

Kθ,p
1 + αθε2ε2

+ θ

[
αθN0,1[Kθ,p

1 ]
N0,1

[
Kθ,p

1

]
+ αθK1

Kθ,p
1 + αθε2ε2 − E0α

θ
K1
Kθ,p

1

]
Then:

ε2 +Kθ
1 −Kθ

2 =
[
(1 + θ)αθN0,1[Kθ

1 ]
+ θαθK1

]
N0,1

[
Kθ

1

]
+ αθK1

Kθ
1 + (1 + θ)αθε2ε2

Rearrange:

Kθ
2 = −

[
(1 + θ)αθN0,1[Kθ

1 ]
+ θαθK1

]
N0,1

[
Kθ

1

]
+
(
1− αθK1

)
Kθ

1 −
[
(1 + θ)αθε2 − 1

]
ε2

Matching coefficients, we obtain:

αθK1
=

1

2
, αθε2 =

1

2 + θ

and

αθN0,1[Kθ
1 ]

= − θ

2 + θ
αθK1

= − θ

2 (2 + θ)
.

The revised time 2 policy can then be rewritten as

Kθ
2 =

θ

2(2 + θ)
E0

[
Kθ

1

]
+

1

2 + θ
Kθ

1 +
1

2 + θ
ε2,

and so the coefficient on Kθ
1 is not equal to that of the time 1 plan (which is 0.5).

The time inconsistency arises because of the information content of Kθ,p
1 with respect to

the capital expected at time zero. Between when reference expectations were formed, at time
0, and when a new decision is made, at time 2, an income shock occurred and agents reacted
to the shock. As a result, capital is not what the agent expected it to be. Agents do not take
into account this surprise in capital when they solve the planning problem at time 1.
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B.5 Proof of Proposition 5

Proof. To obtain the time 1 policy function, we consider the conjecture

Kθ
1 = αθN−1,0[K0]

N−1,0 [K0] + αθK0
K0 + αθε1ε1.

The time 1 trade-off is given by
Cθ

1 = Eθ1
[
CRE

2

]
.

The right hand side equals

Eθ1
[
CRE

2

]
= (1 + θ)E1

[
Y2 +Kθ

1 −KRE
2

]
− θE−1

[
Y2 +KRE

1 −KRE
2

]
= (1 + θ)E1

[
Y + ε2(1− αREε2 ) +Kθ

1(1− αREK1
)
]
− θE−1

[
Y + ε2(1− αREε2 ) +KRE

1 (1− αREK1
)
]

= Y + (1− αREK1
)
[
(1 + θ)Kθ

1 − θE−1
[
KRE

1

]]
= Y +

1

2

[
(1 + θ)Kθ

1 −
2

3
θE−1 [K0]

]
where we have substituted in the RE policy KRE

2 = αREK1
K1 + αREε2 ε2 in the second line and

substituted in αREK1
= 1/2 and αREK0

= 2/3 in the fourth line. Connecting this with the left
hand side, we have

ε1 +K0 −Kθ
1 =

1

2

[
(1 + θ)Kθ

1 −
2

3
θE−1 [K0]

]
.

Plugging in the conjectured solution Kθ
1 = αθN−1,0[K0]

N−1,0 [K0] + αθK0
K0 + αθε1ε1 and equating

coefficients give us

αθN−1,0[K0]
= − 2θ

3(3 + θ)
, αθK0

=
2

3
, αθε1 =

2

3 + θ
.

To obtain the time 2 policy function, we consider the conjecture

Kθ
2 = αθN0,1[Kθ

1 ]
N0,1

[
Kθ

1

]
+ αθK1

Kθ
1 + αθε2ε2.

The time 2 trade-off is given by
Cθ

2 = Eθ2
[
CRE

3

]
.

The right hand side equals

Eθ2
[
CRE

3

]
= (1 + θ)E2

[
Y3 +Kθ

2

]
− θE0

[
Y3 +KRE

2

]
= Y + (1 + θ)Kθ

2 − θE0

[
KRE

2

]
= Y + (1 + θ)Kθ

2 −
1

2
θE0

[
KRE

1

]
where we substituted in αREK1

= 1/2. Connecting this with the left hand side, we have

ε2 +K1 −Kθ
2 = (1 + θ)Kθ

2 −
1

2
θE0K

RE
1 .

Plugging in the conjectured solution Kθ
2 = αθ

N0,1[Kθ
1 ]
N0,1

[
Kθ

1

]
+ αθK1

Kθ
1 + αθε2ε2 and equating

coefficients give us

αθN0,1[Kθ
1 ]

= − θ

2(2 + θ)
, αθK1

=
1

2
, αθε2 =

1

2 + θ
.
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B.6 Proof of Proposition B1

The proposition below considers näıveté and sophistication under J = 1. The näıveté
problem was described in the main text. Entering period 2, the sophisticated agent’s problem
is

max
Kθ

2

[
u(Cθ

2) + Eθ2u(Cθ
3)
]

(5)

where now
Cθ

2 = Y2 +Kθ
1 −Kθ

2 ;Cθ
3 = Y3 +Kθ

2 −Kθ
3 . (6)

Sophistication means that at time 1 the agent understands that her future action is dictated
by equation (5) (as well as Kθ

3 = 0). Thus, the sophisticated agent solves

max
Kθ

1

{
u(Cθ

1) + Eθ1
[
u(Cθ

2) + u(Cθ
3)
]}
, (7)

where Cθ
1 = Y1 +K0 −Kθ

1 , while Cθ
2 and Cθ

3 are determined as in (6). We assume that the
comparison group for Kθ

2 is E2−JK
θ
2 , i.e. the conditional expectation of the DE savings choice

at time 2 made J periods ago by the former sophisticated self, under the true density.

Proposition B1. When J = 1, the näıveté and sophistication policy functions are the same
and recover the DE optimal choices based on time-consistency.

Proof. Policies under näıveté. Conjecture

Kθ
1 = αθK0

K0 + αθε1ε1; Kθ
2 = αθK1

Kθ
1 + αθε2ε2.

The time 2 trade-off is given by

Cθ
2 = Eθ2

[
CRE

3

]
The right hand side equals

Eθ2
[
CRE

3

]
= (1 + θ)E2

[
Y3 +Kθ

2

]
− θE1

[
Y3 +KRE

2

]
= Y + (1 + θ)Kθ

2 − θE1

[
KRE

2

]
= Y + (1 + θ)Kθ

2 −
1

2
θK1,

where we substituted in αREK1
= 1/2 in the third line. Connecting this with the left hand side,

we have

ε2 +Kθ
1 −Kθ

2 = (1 + θ)Kθ
2 −

1

2
θKθ

1 .

Plugging in the conjectured solution Kθ
2 = αθK1

Kθ
1 + αθε2ε2 and equating coefficients give us

αθK1
=

1

2
, αθε2 =

1

2 + θ
.

By Lemma 2 the time 1 trade-off is given by

Cθ
1 = Eθ1

[
CRE

2

]
.
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The right hand side equals

Eθ1
[
CRE

2

]
= (1 + θ)E1

[
Y2 +Kθ

1 −KRE
2

]
− θE0

[
Y2 +KRE

1 −KRE
2

]
= (1 + θ)E1

[
Y + ε2(1− αREε2 ) +Kθ

1(1− αREK1
)
]
− θE0

[
Y + ε2(1− αREε2 ) +KRE

1 (1− αREK1
)
]

= Y + (1− αREK1
)
[
(1 + θ)Kθ

1 − θE0

[
KRE

1

]]
= Y +

1

2

[
(1 + θ)Kθ

1 −
2

3
θK0

]
where we have substituted in the RE policy KRE

2 = αREK1
Kθ

1 + αREε2 ε2 in the second line and
substituted in αREK1

= 1/2 and αREK0
= 2/3 in the fourth line. Connecting this with the left

hand side, we have

ε1 +K0 −Kθ
1 =

1

2

[
(1 + θ)Kθ

1 −
2

3
θK0

]
.

Plugging in the conjectured solution Kθ
1 = αθK0

K0 + αθε1ε1 and equating coefficients give us

αθK0
=

2

3
, αθε1 =

2

3 + θ
.

Policies under sophistication. Conjecture

Kθ
1 = αθ,sK0

K0 + αθ,sε1 ε1; Kθ
2 = αθ,sK1

Kθ
1 + αθ,sε2 ε2.

The time 2 trade-off is given by

Cθ
2 = Eθ2

[
Cθ

3

]
The right hand side equals

Eθ2Cθ
3 = (1 + θ)E2

[
Y3 +Kθ

2

]
− θE1

[
Y3 +Kθ

2

]
= Y + (1 + θ)Kθ

2 − θE1

[
Kθ

2

]
= Y + (1 + θ)Kθ

2 − θα
θ,s
K1
Kθ

1 .

Connecting this with the left hand side, we have

ε2 +Kθ
1 −Kθ

2 = (1 + θ)Kθ
2 − θα

θ,s
K1
Kθ

1 .

Plugging in the conjectured solution Kθ
2 = αθ,sK1

Kθ
1 + αθ,sε2 ε2 and equating coefficients give us

αθ,sK1
=

1

2
, αθ,sε2 =

1

2 + θ
.

The time 1 trade-off is given by

Cθ
1 = Eθ1

[
Cθ

2 +
∂Kθ

2

∂Kθ
1

(
Cθ

3 − Cθ
2

)]
.

but the indirect effect of current choice captured by the last term disappears under J = 1, so

Cθ
1 = Eθ1

[
Cθ

2

]
.
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The right hand side equals

Eθ1
[
Cθ

2

]
= (1 + θ)E1

[
Y2 +Kθ

1 −Kθ
2

]
− θE0

[
Y2 +Kθ

1 −Kθ
2

]
= (1 + θ)E1

[
Y + ε2(1− αθ,sε2 ) +Kθ

1(1− αθ,sK1
)
]
− θE0

[
Y + ε2(1− αθ,sε2 ) +Kθ

1(1− αθ,sK1
)
]

= Y + (1− αθ,sK1
)
[
(1 + θ)Kθ

1 − θE0

[
Kθ

1

]]
= Y +

1

2

[
(1 + θ)Kθ

1 − α
θ,s
K0
θK0

]
where we have substituted in the DE policy Kθ

2 = αθ,sK1
K1 + αθ,sε2 ε2 in the second line and

substituted in αθ,sK1
= 1/2 in the fourth line. Connecting this with the left hand side, we have

ε1 +K0 −Kθ,s
1 =

1

2

[
(1 + θ)Kθ

1 − α
θ,s
K0
θK0

]
.

Plugging in the conjectured solution Kθ
1 = αθ,sK0

K0 + αθ,sε1 ε1 and equating coefficients give us

αθ,sK0
=

2

3
, αθ,sε1 =

2

3 + θ
.

B.7 Proof of Proposition B2

The Proposition below considers the solution to the three-period model under distant
memory (J = 2) and sophistication.

Proposition B2. When J = 2, under sophistication, the time 2 policy function is given by

Kθ
2 = αθ,sE0[K1]

E0[K
θ
1 ] + αθ,sK1

Kθ
1 + αθ,sε2 ε2,

where the coefficients are identical to the näıveté case (modified to expressed in terms of
coefficients αθE0[K1]

, αθK1
and αθε2) and are given by

αθ,sE0[K1]
=

θ

2(2 + θ)
; αθ,sK1

=
1

2 + θ
; αθ,sε2 =

1

2 + θ
.

The time 1 policy function is given by

Kθ
1 = αθ,sE−1[K0]

E−1 [K0] + αθ,sK0
K0 + αθ,sε1 ε1,

which compared to the näıveté policy function in Proposition 5 (modified to expressed in
terms of coefficients αθE−1[K0]

, αθK0
and αθε1) is characterized by the following properties (1)

αθ,sε1 < αθε1 ; (2) αθ,sK0
< αθK0

if θ < 1, and αθ,sK0
> αθK0

if θ > 1; (3), αθ,sE−1[K0]
> αθE−1[K0]

if θ < 1,

and αθ,sE−1[K0]
< αθE−1[K0]

if θ > 1.

Proof. For the time 2 policy, consider the conjecture

Kθ
2 = αθ,sE0[K1]

E0

[
Kθ

1

]
+ αθK1

Kθ
1 + αθε2ε2.

10



The time 2 trade-off is given by
Cθ

2 = Eθ2
[
Cθ

3

]
The right hand side equals

Eθ2
[
Cθ

3

]
= (1 + θ)E2

[
Y3 +Kθ

2

]
− θE0

[
Y3 +Kθ

2

]
= Y +Kθ

2 + θ
[
Kθ

2 − E0

[
Kθ

2

]]
= Y + αθ,sE0[K1]

E0

[
Kθ

1

]
+ αθ,sK1

Kθ
1 + αθ,sε2 ε2 + θ

[
αθ,sε2 ε2 + αθ,sK1

(
Kθ

1 − E0

[
Kθ

1

])]
.

Connecting this with the left hand side, we have

ε2 +Kθ
1 −Kθ

2 = αθ,sE0[K1]
E0

[
Kθ

1

]
+ αθ,sK1

Kθ
1 + αθ,sε2 ε2 + θ

[
αθ,sε2 ε2 + αθ,sK1

(
Kθ

1 − E0

[
Kθ

1

])]
.

Plugging in the conjectured solution Kθ
2 = αθ,sE0[K1]

E0

[
Kθ

1

]
+ αθ,sK1

Kθ
1 + αθ,sε2 ε2 and equating

coefficients give us

αθ,sE0[K1]
=

1

2(2 + θ)
, αθ,sK1

=
1

2 + θ
, αθ,sε2 =

1

2 + θ
.

For the time 1 policy function, conjecture

Kθ
1 = αθ,sE−1[K0]

E−1 [K0] + αθ,sK0
K0 + αθ,sε1 ε1.

The time 1 tradeoff is given by

Cθ
1 = Eθ1

[
Cθ

2 + αθ,sK1
(E2

[
Cθ

3

]
− Cθ

2)
]
, (8)

where the term αθ,sK1
(E2C

θ
3 − Cθ

2) captures the fact that the sophisticated agent internalizes
the fact that the current choice affects the future tradeoff. This term is zero when J = 1
because in that case the plan is time consistent. The right hand side equals

Eθ1
[
Cθ

2 + αθ,sK1
(E2C

θ
3 − Cθ

2)
]

= (1− αθ,sK1
)Eθ1Cθ

2 + αθ,sK1
Eθ1Cθ

3

= (1− αθ,sK1
)
{

(1 + θ)E1

[
Y2 +Kθ

1 −Kθ
2

]
− θE−1

[
Y2 +Kθ

1 −Kθ
2

]}
+ αθ,sK1

{
(1 + θ)E1

[
Y3 +Kθ

2

]
− θE−1

[
Y3 +Kθ

2

]}
After some algebra, we find that this equals

= Y + (1− αθ,sK1
)(1 + θ)

[(
1− αθ,sE−1[K0]

− αθ,sK1

)(
αθ,sE−1[K0]

E−1 [K0] + αθ,sK0
K0

)
+ (1− αθ,sK1

)αθ,sε1 ε1

]
− (1− αθ,sK1

)θ
(

1− αθ,sE−1[K0]
− αθ,sK1

)(
αθ,sE−1[K0]

+ αθ,sK0

)
E−1 [K0]

+ αθ,sK1
(1 + θ)

[
αθ,sE−1[K0]

(
αθ,sE−1[K0]

E−1 [K0] + αθ,sK0
K0

)
+ αθ,sK1

(
αθ,sE−1[K0]

E−1 [K0] + αθ,sK0
K0 + αθ,sε1 ε1

)]
− αθ,sK1

θ
(
αθ,sE−1[K0]

+ αθK1

)(
αθ,sE−1[K0]

+ αθ,sK0

)
E−1 [K0]

The left hand side is given by

Cθ
1 = Y + ε1 +K0 −Kθ

1 .

11



We then connect the left hand side to the right hand side and equate coefficients after
substituting in the conjectured solution for Kθ

1 . Equating coefficients, we have

αθ,sε1 =
1

1 + (1 + θ)
[
(1− αθ,sK1

)2 + (αθ,sK1
)2
] =

(2 + θ)2

(2 + θ)2 + (1 + θ) [(1 + θ)2 + 1]

αθ,sK0
=

1

1 + (1 + θ)
[
(1− αθ,sK1

)(1− αθ,sE0[K1]
− αθ,sK1

) + αθ,sK1
(αθ,sE0[K1]

+ αθ,sK1
)
]

=
2(2 + θ)2

2(2 + θ)2 + (1 + θ) [(1 + θ)(1 + 2θ) + 3]

αθ,sE−1[K0]
=
θ
[
(1− αθ,sK1

)(1− αθ,sE0[K1]
− αθ,sK1

) + αθ,sK1
(αθ,sE0[K1]

+ αθ,sK1
)
]

1 + (1− αθ,sK1
)(1− αθ,sE0[K1]

− αθ,sK1
) + αθ,sK1

(αθ,sE0[K1]
+ αθ,sK1

)
αθ,sK0

=
θ [(1 + 2θ)(1 + θ) + 3]

2(2 + θ)2 + (1 + 2θ)(1 + θ) + 3
αθ,sK0

which give the specific coefficients in Proposition B2. When we compare this sophistication
solution to the näıveté one, we find the patterns stated in Proposition B2.

The solution for the sophisticated choice Kθ
2 follows the same logic as for näıveté choice,

leading to the result in Proposition B2 that the optimal coefficients are the same. The subtle
difference here is the comparison group formation. The näıveté solution can leverage the
law of motion for KRE

1 , so that E0

[
KRE

1

]
can be immediately plugged in the determination

of time 2 savings. In contrast, the corresponding E0

[
Kθ

1

]
is more difficult to transparently

assess because it requires computing a feedback effect between the Kθ
1 chosen by the time 1

sophisticated DE agent, which in turn is a function of expectations about Kθ
2 .

There are three conceptual forces that affect the coefficients of sophisticated time 1 policy
compared to their näıveté case. First, the agent now anticipates that she will over-consume
(relative to her naive beliefs) at time 2 out of K1, as the forecasted response of future savings
out of capital entering period 2 is smaller than under näıveté, i.e. αθ,sK1

< αREK1
. This force

alone, coming from the Eθ1
[
Cθ

2

]
term in (8), leads the agent to consume more today out of

ε1 to achieve consumption smoothing between period 1 and 2. Second, the misalignment of
her perceived tradeoffs means that following a positive innovation ε1, from the viewpoint
of current self, the time 2 self will under-consume in period t = 3 relative to t = 2. This
constitutes an indirect effect, i.e. the second term in (8), that leads to more savings. The race
between these two forces is dominated here by the former, direct effect, as αθ,sK1

< 0.5, and
thus the agent ends up saving less out of ε1 than under näıveté, i.e. αθ,sε1 < αθε1 . Third, there
is the conceptual difference of the comparison groups. With sophistication, the informational
state E0

[
Kθ

1

]
(a) matters for the Kθ

2 solution in Proposition B2 but also (b) needs to be
itself based on Kθ

1 , a choice that in turn is affected by Eθ1
[
Kθ

2

]
in equation (8). The effect

of this fixed point consideration is less transparent, as it turns out to amplify or dampen,
through a non-monotonic relationship with θ, the optimal responses of sophisticated time 1
savings to K0 and E−1 [K0] compared to the näıveté case.
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B.8 Proof of Proposition 6

We first guess and verify the RE solution. Conjecture consumption policy

CRE
t =

r

1 + r

(
KRE
t−1 + εt +

1 + r

r
Y

)
=

r

1 + r

(
KRE
t−1 + εt

)
+ Y

and the resulting savings

KRE
t = (1 + r)

[
KRE
t−1 + Y + εt −

r

1 + r

(
KRE
t−1 + εt

)
− Y

]
= (1 + r)

1

1 + r

[
KRE
t−1 + εt

]
= KRE

t−1 + εt

Check the FOC by plugging in the above conjectures

CRE
t = Et(CRE

t+1)

r

1 + r

[
KRE
t−1 + εt

]
+ Y = Et

[
r

1 + r

[
KRE
t + εt+1

]
+ Y

]
r

1 + r

[
KRE
t−1 + εt

]
= Et

[
r

1 + r

[
KRE
t−1 + εt + εt+1

]]
r

1 + r

[
KRE
t−1 + εt

]
=

r

1 + r

[
KRE
t−1 + εt

]
so the both sides are indeed equal.

To solve for the DE poicy function, we take the FOC with respect to Kθ
t in (3.27):

u′(Cθ
t ) = Eθt

[
V ′(Kθ

t )
]
,

and use the envelope theorem in (3.28):

V ′(Kθ
t ) = u′(CRE

t+1).

Combining the two, we have
u′(Cθ

t ) = Eθt
(
u′(CRE

t+1)
)
.

We use the budget constraint to replace Cθ
t in the left hand side and obtain:

Kθ
t−1 + Y + εt −

Kθ
t

1 + r
= Eθt

[
r

1 + r

(
Kθ
t + εt+1

)
+ Y

]
Kθ
t−1 + εt −

Kθ
t

1 + r
=

r

1 + r
Eθt
(
Kθ
t + εt+1

)
Applying DE and using the fact that Et−JKRE

t = Et−J
[
KRE
t−1 + εt

]
, we have that the

expectation on the right hand side is equal to:

Eθt
[
Kθ
t + εt+1

]
= Kθ

t + θ
[
Kθ
t − Et−JKRE

t

]
= Kθ

t + θ
[
Kθ
t − Et−J

(
KRE
t−1
)]

13



Then

Kθ
t−1 + εt −

Kθ
t

1 + r
=

r

1 + r

[
Kθ
t + θ

[
Kθ
t − Et−J

(
KRE
t−1
)]]

Rearrange:

(1 + r)Kθ
t−1 + rθKθ

t−1 + (1 + r) εt = Kθ
t + rKθ

t + rθKθ
t + rθKθ

t−1 − rθEt−J
(
KRE
t−1
)

[1 + r (1 + θ)]Kθ
t−1 + (1 + r) εt = [1 + r (1 + θ)]Kθ

t − rθNt−J,t−1
(
Kθ
t−1
)

Then:

Kθ
t = Kθ

t−1 −
rθ

1 + r (1 + θ)
Nt−J,t−1

(
Kθ
t−1
)

+
1 + r

1 + r (1 + θ)
εt.

where Nt−J,t−1
(
Kθ
t−1
)

= Kθ
t−1 − Et−J

(
KRE
t−1
)
.

Consistent with the discussion above and the näıveté assumption, we assume that memory
is based on the rational expectation solution. This is how the agent perceives capital should
have evolved from the point of view of time t− J. Thus, we have Et−J

(
KRE
t−1
)

= Kθ
t−J and

the solution becomes:

Kθ
t = Kθ

t−1 −
rθ

1 + r (1 + θ)

[
Kθ
t−1 −Kθ

t−J
]

+
1 + r

1 + r (1 + θ)
εt.

We can also rewrite this as:

Kθ
t =

1

1 + r (1 + θ)

[
Kθ
t−1 + rθKθ

t−J + (1 + r) εt
]
.

C Equilibrium Conditions of the New Keynesian Model
1. Capital Euler equation:

µθt = βEθt
[
(CRE

t+1 − bCθ
t )−1(Rk,RE

t+1 uREt+1 − a(uREt+1)) + µREt+1(1− δ)
]
,

where µθt is the Lagrangian multiplier on the capital accumulation equation.

2. Utilization choice:
Rk,θ
t = Rk(uθt )

τ

3. Investment first-order condition:

(Cθ
t − bCθ

t−1)
−1 = µθt

{
1− κ

2

(
∆Iθt − γ

)2 − κ (∆Iθt − γ)∆Iθt

}
+ βEθt

[
µREt+1κ

(
∆IREt+1 − γ

) (
∆IREt+1

)2]
4. Investment growth:

∆Iθt = Iθt /I
θ
t−1

5. Consumption Euler equation:

Qθ
t =

βRθ
t

Π
Eθt
[
QRE
t+1

]
14



6. Definition of Qθ
t :

Qθ
t

Qθ
t−1

=
Π

Πθ
t

(
Cθ
t − bCθ

t−1

Cθ
t−1 − bCθ

t−2

)−1
7. Capital accumulation:

Kθ
t = (1− δ)Kθ

t−1 +

{
1− κ

2

(
Iθt
Iθt−1
− γ
)2
}
Iθt

8. Real wage:

W̃ θ
t = MCθ

t (1− α)
Y θ
t

N θ
t

where W̃ θ
t ≡ W θ

t /P
θ
t is the real wage.

9. Capital rental rate:

Rk,θ
t = MCθ

t α
Y θ
t

Kθ
t−1

10. Production function:
Y θ
t = (uθtK

θ
t−1)

α(γtN θ
t )1−α

11. Optimal price setting:

Qθ
t

{
− 1

λf − 1
Y θ
t +

λf
λf − 1

MCθ
t Y

θ
t − ϕp

(
Πθ
t − Π

)
Πθ
tY

θ
t

}
+
βϕp
Π

Eθt
[
QRE
t+1

(
ΠRE
t+1 − Π

)
(ΠRE

t+1)
2Y RE

t+1

]
= 0

12. Optimal wage setting:

Qθ
t

[(
− 1

λn − 1

)
N θ
t + (Cθ

t − bCθ
t−1)

(
λn

λn − 1

)(
N θ
t

)1+η 1

W̃ θ
t

− ϕw
(
Πθ
w,t − γΠ

)
Πθ
w,t

]
+
βϕw
Π

Eθt
[
QRE
t+1

(
ΠRE
w,t+1 − γΠ

)
(ΠRE

w,t+1)
2
]

= 0

13. Nominal wage inflation:

Πθ
w,t = Πθ

t

W̃ θ
t

W̃ θ
t−1

14. Resource constraint:

Cθ
t + Iθt +

ϕp
2

(
Πθ
t − Π

)2
Y θ
t +

ϕw
2

(
Πθ
w,t − γΠ

)2
W̃ θ
t + a(uθt )K

θ
t−1 = Y θ

t

15. GDP:

Y G,θ
t = Y θ

t −
ϕp
2

(
Πθ
t − Π

)2
Y θ
t −

ϕw
2

(
Πθ
w,t − γΠ

)2
W̃ θ
t − a(uθt )K

θ
t−1
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16. Taylor rule:

Rθ
t

R
=

(
Rθ
t−1

R

)ρR
(

Π̃θ
t

Π

)φπ (
Y G,θ
t

γY G,θ
t−1

)φY


1−ρR

exp(εt)

D Solution Algorithm
We start from a linear RE system

Γ0
n×n

xREt
n×1

= Γ1
n×n

xREt−1
n×1

+ Ψ
n×ns

εt
ns×1

+ Π
n×ne

ηREt
ne×1

where xREt , εt and ηREt are vectors of endogenous variables, shocks, and expectation errors,
respectively. A recursive law of motion can be obtained, using for example Sims (2000), as:

xREt = TRExREt−1 + RREεt.

Note that the solution can be divided based on the non-expectation
(
x̃REt

)
and expectation

terms
(
EtyREt+1

)
: x̃REt

(n−ne)×1
EtyREt+1
ne×1

 =

 TRE
11

(n−ne)×(n−ne)
TRE

12
(n−ne)×ne

TRE
21

ne×(n−ne)
TRE

22
ne×ne


 x̃REt−1

(n−ne)×1
Et−1yREt

ne×1

+

 RRE
1

(n−ne)×ns
RRE

2
ne×ns

 εt
where yREt+1 is a subset of x̃REt+1.

Define:

xθt =

 x̃θt
(n−ne)×1(
EtyREt+1

)θ
ne×1


Note that

(
EtyREt+1

)θ
denotes the realized value for rational expectations, so it is different

from EθtyREt+1. We have:

EtyREt+1 = MTRExθt =
(
EtyREt+1

)θ
where M is a matrix that extract the relevant elements from TRExθt . Note that the equation
needs to be included to the system of equations for the DE model because it provides the law
of motion for the realized expectations. To see this,

(EtyREt+1)
θ = [M1 : 0]︸ ︷︷ ︸

M

[
TRE

11 TRE
12

TRE
21 TRE

22

] [
x̃θt

(EtyREt+1)
θ

]
= M1T

RE
11 x̃θt + M1T

RE
12 (EtyREt+1)

θ

so
−M1T

RE
11 x̃θt + (I−M1T

RE
12 )(EtyREt+1)

θ = 0.
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It is useful to divide variables xREt in the original gensys system into non-expectation
terms and expectation terms: Γ0,11

(n−ne)×(n−ne)
Γ0,12

(n−ne)×ne
Γ0,21

ne×(n−ne)
Γ0,22
ne×ne


 x̃REt
(n−ne)×1
EtyREt+1
ne×1

 =

 Γ1,11
(n−ne)×(n−ne)

Γ1,12
(n−ne)×ne

Γ1,21
ne×(n−ne)

Γ1,22
ne×ne


 x̃t−1

(n−ne)×1
Et−1yREt

ne×1


+

 Ψ1
(n−ne)×ns

Ψ2
ne×ns

 εt
ns×1

+

 Π1
(n−ne)×ne

Π2
ne×ne

 ηREt
ne×1

Then, the model under DE can be expressed using matrix notation as:

Γθ
0x

θ
t = Γθ

2EθtyREt+1 + Γθ
1x

θ
t−1 + Ψθεt (9)

where Γθ
0 includes the RE restrictions: Γ0,11

(n−ne)×(n−ne)
0

(n−ne)×ne

−M1T
RE
11

ne×(n−ne)
I−M1T

RE
12

ne×ne


 x̃θt

(n−ne)×1(
EtyREt+1

)θ
ne×1

 =

 −Γ0,12
(n−ne)×ne

0
ne×ne

EθtyREt+1

+

 Γ1,11
(n−ne)×(n−ne)

Γ1,12
(n−ne)×ne

0
ne×(n−ne)

0
ne×ne


 x̃θt−1

(n−ne)×1(
Et−1yREt

)θ
ne×1

+

 Ψ1
(n−ne)×ns

0
ne×ns

 εt
Then:

Γθ
0x

θ
t = Γθ

2E
θ
t y

RE
t+1 + Γθ

1x
θ
t−1 + Ψθεt

Γθ
0x

θ
t = Γθ

2

[
(1 + θ)EtyREt+1 −

J∑
j=1

θαjEt−jyREt+1

]
+ Γθ

1x
θ
t−1 + Ψθεt

Suppose that we do not need all elements in xθt to form expectations about the future.1 In
particular, we have

yREt = MxREt

xREt = TRExREt−1 + RREεt

but can be reduced to

yREt = M̃x̃REt

x̃REt = T̃REx̃REt−1 + R̃REεt

1The method can easily allow for the case where we need full elements in xθt to form expectations. The
advantage of the current method is that its state space is smaller and hence is useful for a DSGE estimation,
among other things.
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Then (9) becomes

Γθ
0x

θ
t = Γθ

2

[
(1 + θ) MTRExθt −

J∑
j=1

θαjM̃
(
T̃RE

)j+1

x̃θt−j

]
+ Γθ

1x
θ
t−1 + Ψθεt. (10)

This becomes: [
Γθ

0 − Γθ
2 (1 + θ) MTRE

]
xθt =

[
Γθ

1 − Γθ
2θα1M(TRE)2

]
xθt−1

− Γθ
2θα2M̃

(
T̃RE

)3
x̃θt−2

. . .

− Γθ
2θαJM̃

(
T̃RE

)J+1

x̃θt−J

+ Ψθεt.

The solution can be obtained inverting the left hand side matrix:

xθt =(Aθ
0)
−1 [Γθ

1 − Γθ
2θα1M(TRE)2

]
xθt−1

− (Aθ
0)
−1Γθ

2θα2M̃
(
T̃RE

)3
x̃θt−2

. . .

− (Aθ
0)
−1Γθ

2θαJM̃
(
T̃RE

)J+1

x̃θt−J

+ (Aθ
0)
−1Ψθεt,

where Aθ
0 ≡

[
Γθ

0 − Γθ
2 (1 + θ) MTRE

]
.

Writing in a more compact form, we obtain
xθt

x̃θt−1
...

x̃θt−J+1


︸ ︷︷ ︸

zθt

=


(
Aθ

0

)−1 [
Γθ

1 − Γθ
2θα1M(TRE)2

]
−
(
Aθ

0

)−1
Γθ

2θα2M̃
(
T̃RE

)3
. . . −

(
Aθ

0

)−1
Γθ

2θαJM̃
(
T̃RE

)J+1

S 0 . . . 0
I

0 . . . 0


︸ ︷︷ ︸

Tθ
xθt−1
x̃θt−2

...
x̃θt−J


︸ ︷︷ ︸

zθt−1

+


(
Aθ

0

)−1
Ψθ

0
...
0


︸ ︷︷ ︸

Rθ

εt,
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where S is a selection matrix that relates xθt to x̃θt :

x̃θt = Sxθt .

Finally, we check that all variables over which we take DE present residual uncertainty.
To do this, we define a vector wRE

t = QxREt that extracts all relevant linear combinations
from the vector xREt . This vector contains all and only the variables over which we compute
DE. Then, for each element wREj,t of this vector we verify that the one-step-ahead conditional
variance is positive:

V art
(
wREj,t+1

)
= (QRREΣ(QRRE)′)j,j > 0,

where Σ ≡ Et[εt+1ε
′
t+1] and (·)j,j indicates the j-th diagonal element of the matrix.

E Estimation method
Our description of the methodology closely follows Christiano et al. (2010). The Bayesian

estimation of impulse-response-matching method first computes the ‘likelihood” of the data
using approximation based on standard asymptotic distribution theory. Let ψ̂ denote the
impulse response function calculated from a local projection and let ψ(θ) denote the impulse
response function from the DSGE model, which depend on the structural parameters θ.
Suppose the DSGE model is correct and let θ0 denote the true parameter vector; hence ψ(θ0)
is the true impulse response function. Then we have

√
T (ψ̂ − ψ(θ0))

d−→ N(0,W (θ0)),

where T is the number of observations and W (θ0) is the asymptotic sampling variance, which
depends on θ0. The asymptotic distribution of ψ̂ can be rewritten as

ψ̂
d−→ N(ψ(θ0), V ), V ≡ W (θ0)

T
.

We use a consistent estimator of V , where the non-diagonal terms are set to zero and the
main diagonal elements consist of the sample variance of ψ̂.2 As Christiano et al. (2011)
explains, there are two advantages of this approach. First, it improves small sample efficiency
and can be justified using a logic similar to the estimation of frequency-zero spectral densities
in Newey and West (1987). Second, the interpretation of the estimator is graphically intuitive
and transparent: it chooses parameters so that the model-implied impulse responses lie inside
a confidence interval around the empirical responses.3

The method then calculates the likelihood

L(ψ|θ) = (2π)−
N
2 |V |−

1
2 exp{−0.5[ψ̂ − ψ(θ)]′V −1[ψ̂ − ψ(θ)]},

where N is the total number of elements in the impulse responses to be matched. Intuitively,
the likelihood is higher when the model-based impulse response ψ(θ) is closer to the empirical

2Altig et al. (2011) and Christiano et al. (2005) use this approach in a frequentist context.
3In contrast, when the non-diagonal terms of V are non-zero, the estimator also takes into account the

deviations of the model from data across different impulse responses in a non-intuitive manner.
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counterpart ψ̂, taking into account the precision of the estimated empirical responses. We
use the Bayes law to obtain the posterior distribution p(θ|ψ):

p(θ|ψ) =
p(θ)L(ψ|θ)

p(ψ)
,

where p(θ) is the prior and p(ψ) is the marginal likelihood. We simulate the posterior
distribution p(θ|ψ) using the random-walk Metropolis-Hasting algorithm.

To conduct model comparisons, we use marginal likelihoods, computed from the MCMC
output using the Geweke (1999)’s modified harmonic mean estimator. Inoue and Shintani
(2018) provide asymptotic justification for a such exercise. In particular, they show that a
model with a higher marginal likelihood is either correct or a better approximation to true
impulse responses as the sample size approaches infinity.

F Additional Results
In this Appendix we report some additional results for the estimated DSGE model.
Table F1 reports the priors and the posterior mode for the model parameters of the DE

model and RE re-estimated model. Standard deviations are reported in parentheses. The
priors are symmetric across the two models and diffuse.

Figure F1 reports the consumption impulse responses of DE and RE models without
consumption habit. In the estimated DE model without habit, the diagnosticity parameter is
estimated to be significantly smaller than the benchmark DE model at θ = 0.64. The mean
and standard deviation of the Beta distribution that control the weights for the comparison
group are 0.35 and 0.17, respectively, resulting in a more distant and dispersed memory
relative to the benchmark estimated DE model with habit. The left panel of Figure F1
shows that the DE model without habit is able to generate boom-bust cycle in consumption.
In response to an unexpected Fed rate cut, consumption initially spikes. This is because
without habit, according to the Euler equation (4.39), the lower-than-usual interest rate
implies falling consumption (negative expected consumption growth).4 In the medium run,
consumption gradually increases because, as shown in the right panel, unexpectedly high
consumption implies unexpectedly high RE consumption Et

[
ĉREt+1

]
(relative to the comparison

group Ert
[
ĉREt+1

]
) and hence high DE consumption Eθt

[
ĉREt+1

]
. As consumption drops, agents

become overly pessimistic (low Eθt
[
ĉREt+1

]
), feeding into significantly low consumption below

trend. An interesting difference of the no habit model compared to the benchmark DE
model with habit is that, because agents expect a quicker reversion of consumption to
trend, movements in DE consumption Eθt ĉREt+1 are smoother and, as a result, the surprise
in cumulative inflation π∗J,t plays a smaller role in determining the dynamics. Finally, note
that in contrast to the DE model, both counterfactual and re-estimated RE models generate
transitory IRFs that understate the amplitude of empirical consumption response. As a
result, the log marginal likelihood of the DE model is (−388 − (−437) =) 49 log points
higher than the RE model. We conclude that the DE model delivers boom-bust dynamics
irrespective of whether it features consumption habit or not.

Figure F2 reports the model impulse responses when we use an alterative prior for the
diagnosticity parameter θ. Specifically, we consider a Normal prior with mean 1 and standard

4In the benchmark model with habit, this initial spike is absent because habit suppresses the initial spike
by breaking the tight link between low rate and negative consumption growth.
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Table F1: Estimated parameters

Prior Posterior mode
Type Mean Std DE RE

η Inverse Frisch elasticity G 2 0.3 2.11 1.56
(0.28) (0.26)

b Consumption habit B 0.5 0.2 0.80 0.90
(0.01) (0.01)

τ Utilization cost IG 1 1 0.22 0.27
(0.01) (0.01)

κ Investment adjustment cost G 2 0.2 2.97 5.48
(0.20) (0.36)

ϕp Price adjustment cost G 100 20 195.4 291.28
(21.2)) (31.6)

ϕw Wage adjustment cost G 100 20 88.6 78.8
(20.3) (18.0)

ρR Taylor rule smoothing B 0.5 0.2 0.009 0.82
(0.008) (0.018)

φπ Taylor rule inflation N 1.5 0.4 1.000 1.000
(0.01) (0.025)

φY Taylor rule output N 0.1 0.05 0.67 0.23
(0.02) (0.05)

100σR Monetary policy shock IG 1 1 0.15 0.21
(0.01) (0.02)

θ Diagnosticity parameter∗ N 0 0.2 1.97 –
(0.10)

µ Memory distribution mean B 0.5 0.2 0.17 –
(0.01)

σ Memory distribution stdev G 0.2 0.05 0.03 –
(0.004)

Log marginal likelihood -345 -369

Notes: ‘DE’ corresponds to the model with diagnostic expectations and ‘RE’ corresponds to the rational

expectations version. B refers to the Beta distribution, N to the Normal distribution, G to the Gamma

distribution, IG to the Inverse-gamma distribution. (∗For the prior for the diagnoscity parameter, we

truncate the Normal distribution above θ ≥ 0.) Posterior standard deviations are in parentheses and are

obtained from draws using the random-walk Metropolis-Hasting algorithm. The marginal likelihood is

calculated using Geweke’s modified harmonic mean estimator.
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Figure F1: Consumption paths in a model without habit

Notes: The left panel shows the consumption IRFs in response to a monetary policy shock from the DE

model without habit (blue circled line), counterfactual RE model without habit (red dashed line) and the

re-estimated RE model without habit (magenta dashed line). The right panel plots DE expected

consumption (Eθt
[
ĉREt+1

]
), realized equilibrium consumption (ĉθt ), RE expected consumption (Et

[
ĉREt+1

]
) and

reference expectation (Ert
[
ĉREt+1

]
).

deviation 0.2. We find that the estimated θ = 2.16, slightly higher than the benchmark
estimate of θ = 1.97. Nevertheless, the estimated DE IRF under the alternative prior is very
similar to the benchmark IRF reported in the paper.

Figure F3 reports the model impulse responses when we target the inflation and output
expectations. When expectations are targeted, the diagnosticity parameter is estimated
to be slightly lower than the benchmark DE model at θ = 1.77. The mean and standard
deviation of the Beta distribution that control the weights for the comparison group are
0.19 and 0.04, respectively and thus are similar to the estimated values in the benchmark
DE model. Figure F3 shows that the DE model is able to replicate the boom-bust cycles in
macro variables as well as the responses of survey expectations, although it slightly overstates
consumption during the decline after the peak. The counterfactual RE model where we set
the diagnosticity parameter θ to 0 while holding fixed other estimated parameters generates
transitory and negligible response. The re-estimated RE model misses the magnitude of the
bust in consumption, hours and GDP. It also has difficulty matching realized and expected
inflation. As a result, the log marginal likelihood of the DE model is (−636− (−645) =) 9
log points higher than the RE model.

Figure F4 reports the impulse response of the marginal utility to an expensionary monetary
policy shock, given that the estimated Euler Equation features habits:

−Eθt [λ̂REt+1] + λ̂θt = r̂θt − Eθt [π̂REt+1]− θπ∗J,t (11)
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Figure F2: Impulse responses to a monetary policy shock: Alternative prior for θ

Notes: The interpretation of the plotted lines follow their description for Figure 2. The responses of

consumption, hours, GDP and investment are in percentage deviations from the steady states while the

inflation, FFR and inflation and output growth expectations are in annual percentage points.

where

λ̂θt = −
ĉθt − bγ−1ĉθt−1

1− bγ−1
. (12)

Marginal utility follows a symmetric pattern with respect to consumption, once controlling
for habits. The initial increase in consumption is associated with low expected marginal utility
that induces expectations of even lower marginal utility. Thus, agents expect consumption
to increase even when controlling for the stock of habits. As the economy progresses in its
response to the shock, consumption starts declining and marginal utility to increase. However,
reference expectations for marginal utility also start increasing. This is because reference
expectations were formed at a time of high consumption. Under RE, agents expect a fairly
quick return to the steady state from above, implying consumption lower than the stock
of habits, leading to a positive RE marginal utility. However, under DE, the return to the
steady state is slower than expected as agents remain overly optimistic for a while. Agents
are still surprised by the high consumption, leading to a negative surprise in marginal utility,
amplified by DE. Thus, past decisions feed into current beliefs, affecting the duration and
amplitude of the cycle. It is only around 15 quarters that reference expectations catch up
with the current marginal utility. As consumption moves below trend, agents start expecting
a return to the steady from below, generating a negative reference expectation for marginal
utility as consumption is expected to be higher than the stock of habits. In the bust phase,
agents are surprised by the fact that consumption is still well below trend, leading to a
positive surprise in marginal utility, that induces magnified DE of high marginal utility in
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Figure F3: Impulse responses to a monetary policy shock: Survey expectations as targets

Notes: The interpretation of the plotted lines follow their description for Figure 2. The responses of

consumption, hours, GDP and investment are in percentage deviations from the steady states while the

inflation, FFR and inflation and output growth expectations are in annual percentage points.

the future.
How can we rationalize this behavior from the perspective of the Euler equation under

DE in (4.39)? As mentioned in the paper, a key role is played by the surprise in cumulative
inflation π∗J,t with respect to the reference expectations formed in the past. On impact,
because of an increase in utilization, inflation declines. This determines a negative surprise
in the price level that induces a misperception in the model relevant real interest rate that
starts increasing. This perceived high real interest is, in the eyes of the agent, justified
in light of a perceived acceleration in consumption that more than compensates for the
habit stock. In other words, not only agents expect consumption to be higher in the
future, but they also expect the marginal utility to be lower: −Eθt [λ̂REt+1] + λ̂θt > 0 implies
Eθt
[
ĉREt+1 − bγ−1ĉθt

]
−
[
ĉθt − bγ−1ĉθt−1

]
> 0. Eventually, inflation starts picking up, leading first

to a reduction in the negative surprises for the price level and then eventually to positive
surprises. This determines a reversal in the model relevant real interest rate that moves into
the negative territory during the bust part of the cycle, when agents find the perceived low
real interest rate justified in light of their excessive pessimism. Now not only they expect
consumption to decline, but also to do so in a way to increase the marginal utility.

G Alternative Expression of New Keynesian Phillips Curve
In this Appendix we derive an alternative expression of the New Keynesian Phillips Curve

(NKPC) of our DE model that we use to discuss the connection of inflation and real activity
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Figure F4: Impulse response of marginal utility

Notes: The Figure shows the DE marginal utility (Eθt [λ̂REt+1]), realized equilibrium marginal utility (λ̂θt ), RE

marginal utility (Et[λ̂REt+1]) and reference expectation of marginal utility (Ert [λ̂REt+1]).

in Section 4. Consider the NKPC:

π̂θt = βEθt [π̂REt+1] + κpm̂c
θ
t ,

where κp ≡ (ϕpΠ
2(λf − 1))−1. The shadow RE NKPC reads:

π̂REt = βEt[π̂REt+1] + κpm̂c
RE
t .

Iterating forward the RE version of the NKPC, RE inflation can be expressed as:

π̂REt = κp

∞∑
i=0

βiEtm̂cREt+i .

Thus, we have:

π̂θt = κp

∞∑
i=1

βiEθt [m̂c
RE
t+i ] + κpm̂c

θ
t ,

where we have used the fact that DE are additive as long as uncertainty is present. This
expression makes clear that inflation depends on the DE of future marginal costs for a given
starting value of current marginal costs.
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